ترغب بنشر مسار تعليمي؟ اضغط هنا

Decomposition of Gaussian processes, and factorization of positive definite kernels

254   0   0.0 ( 0 )
 نشر من قبل Feng Tian
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish a duality for two factorization questions, one for general positive definite (p.d) kernels $K$, and the other for Gaussian processes, say $V$. The latter notion, for Gaussian processes is stated via Ito-integration. Our approach to factorization for p.d. kernels is intuitively motivated by matrix factorizations, but in infinite dimensions, subtle measure theoretic issues must be addressed. Consider a given p.d. kernel $K$, presented as a covariance kernel for a Gaussian process $V$. We then give an explicit duality for these two seemingly different notions of factorization, for p.d. kernel $K$, vs for Gaussian process $V$. Our result is in the form of an explicit correspondence. It states that the analytic data which determine the variety of factorizations for $K$ is the exact same as that which yield factorizations for $V$. Examples and applications are included: point-processes, sampling schemes, constructive discretization, graph-Laplacians, and boundary-value problems.

قيم البحث

اقرأ أيضاً

The main purpose of our paper is a new approach to design of algorithms of Kaczmarz type in the framework of operators in Hilbert space. Our applications include a diverse list of optimization problems, new Karhunen-Lo`eve transforms, and Principal C omponent Analysis (PCA) for digital images. A key feature of our algorithms is our use of recursive systems of projection operators. Specifically, we apply our recursive projection algorithms for new computations of PCA probabilities and of variance data. For this we also make use of specific reproducing kernel Hilbert spaces, factorization for kernels, and finite-dimensional approximations. Our projection algorithms are designed with view to maximum likelihood solutions, minimization of cost problems, identification of principal components, and data-dimension reduction.
The present paper presents two new approaches to Fourier series and spectral analysis of singular measures.
163 - Palle Jorgensen , Feng Tian 2019
With view to applications in stochastic analysis and geometry, we introduce a new correspondence for positive definite kernels (p.d.) $K$ and their associated reproducing kernel Hilbert spaces. With this we establish two kinds of factorizations: (i) Probabilistic: Starting with a positive definite kernel $K$ we analyze associated Gaussian processes $V$. Properties of the Gaussian processes will be derived from certain factorizations of $K$, arising as a covariance kernel of $V$. (ii) Geometric analysis: We discuss families of measure spaces arising as boundaries for $K$. Our results entail an analysis of a partial order on families of p.d. kernels, a duality for operators and frames, optimization, Karhunen--Lo`eve expansions, and factorizations. Applications include a new boundary analysis for the Drury-Arveson kernel, and for certain fractals arising as iterated function systems; and an identification of optimal feature spaces in machine learning models.
We give explicit transforms for Hilbert spaces associated with positive definite functions on $mathbb{R}$, and positive definite tempered distributions, incl., generalizations to non-abelian locally compact groups. Applications to the theory of exten sions of p.d. functions/distributions are included. We obtain explicit representation formulas for positive definite tempered distributions in the sense of L. Schwartz, and we give applications to Dirac combs and to diffraction. As further applications, we give parallels between Bochners theorem (for continuous p.d. functions) on the one hand, and the generalization to Bochner/Schwartz representations for positive definite tempered distributions on the other; in the latter case, via tempered positive measures. Via our transforms, we make precise the respective reproducing kernel Hilbert spaces (RKHSs), that of N. Aronszajn and that of L. Schwartz. Further applications are given to stationary-increment Gaussian processes.
214 - Palle Jorgensen , Feng Tian 2018
Starting with the correspondence between positive definite kernels on the one hand and reproducing kernel Hilbert spaces (RKHSs) on the other, we turn to a detailed analysis of associated measures and Gaussian processes. Point of departure: Every pos itive definite kernel is also the covariance kernel of a Gaussian process. Given a fixed sigma-finite measure $mu$, we consider positive definite kernels defined on the subset of the sigma algebra having finite $mu$ measure. We show that then the corresponding Hilbert factorizations consist of signed measures, finitely additive, but not automatically sigma-additive. We give a necessary and sufficient condition for when the measures in the RKHS, and the Hilbert factorizations, are sigma-additive. Our emphasis is the case when $mu$ is assumed non-atomic. By contrast, when $mu$ is known to be atomic, our setting is shown to generalize that of Shannon-interpolation. Our RKHS-approach further leads to new insight into the associated Gaussian processes, their It^{o} calculus and diffusion. Examples include fractional Brownian motion, and time-change processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا