ﻻ يوجد ملخص باللغة العربية
Starting with the correspondence between positive definite kernels on the one hand and reproducing kernel Hilbert spaces (RKHSs) on the other, we turn to a detailed analysis of associated measures and Gaussian processes. Point of departure: Every positive definite kernel is also the covariance kernel of a Gaussian process. Given a fixed sigma-finite measure $mu$, we consider positive definite kernels defined on the subset of the sigma algebra having finite $mu$ measure. We show that then the corresponding Hilbert factorizations consist of signed measures, finitely additive, but not automatically sigma-additive. We give a necessary and sufficient condition for when the measures in the RKHS, and the Hilbert factorizations, are sigma-additive. Our emphasis is the case when $mu$ is assumed non-atomic. By contrast, when $mu$ is known to be atomic, our setting is shown to generalize that of Shannon-interpolation. Our RKHS-approach further leads to new insight into the associated Gaussian processes, their It^{o} calculus and diffusion. Examples include fractional Brownian motion, and time-change processes.
We establish a duality for two factorization questions, one for general positive definite (p.d) kernels $K$, and the other for Gaussian processes, say $V$. The latter notion, for Gaussian processes is stated via Ito-integration. Our approach to facto
If Poincar{e} inequality has been studied by Bobkov for radial measures, few is known about the logarithmic Sobolev inequalty in the radial case. We try to fill this gap here using different methods: Bobkovs argument and super-Poincar{e} inequalities
We use reproducing kernel methods to study various rigidity problems. The methods and setting allow us to also consider the non-positive case.
For any real $beta$ let $H^2_beta$ be the Hardy-Sobolev space on the unit disk $D$. $H^2_beta$ is a reproducing kernel Hilbert space and its reproducing kernel is bounded when $beta>1/2$. In this paper, we study composition operators $C_varphi$ on $H
We prove two new equivalences of the Feichtinger conjecture that involve reproducing kernel Hilbert spaces. We prove that if for every Hilbert space, contractively contained in the Hardy space, each Bessel sequence of normalized kernel functions can