ﻻ يوجد ملخص باللغة العربية
We give explicit transforms for Hilbert spaces associated with positive definite functions on $mathbb{R}$, and positive definite tempered distributions, incl., generalizations to non-abelian locally compact groups. Applications to the theory of extensions of p.d. functions/distributions are included. We obtain explicit representation formulas for positive definite tempered distributions in the sense of L. Schwartz, and we give applications to Dirac combs and to diffraction. As further applications, we give parallels between Bochners theorem (for continuous p.d. functions) on the one hand, and the generalization to Bochner/Schwartz representations for positive definite tempered distributions on the other; in the latter case, via tempered positive measures. Via our transforms, we make precise the respective reproducing kernel Hilbert spaces (RKHSs), that of N. Aronszajn and that of L. Schwartz. Further applications are given to stationary-increment Gaussian processes.
With view to applications in stochastic analysis and geometry, we introduce a new correspondence for positive definite kernels (p.d.) $K$ and their associated reproducing kernel Hilbert spaces. With this we establish two kinds of factorizations: (i)
The present paper presents two new approaches to Fourier series and spectral analysis of singular measures.
We establish a duality for two factorization questions, one for general positive definite (p.d) kernels $K$, and the other for Gaussian processes, say $V$. The latter notion, for Gaussian processes is stated via Ito-integration. Our approach to facto
The main purpose of our paper is a new approach to design of algorithms of Kaczmarz type in the framework of operators in Hilbert space. Our applications include a diverse list of optimization problems, new Karhunen-Lo`eve transforms, and Principal C