ﻻ يوجد ملخص باللغة العربية
Thermodynamic process at zero-entropy-production (EP) rate has been regarded as a reversible process. A process achieving the Carnot efficiency is also considered as a reversible process. Therefore, the condition, `Carnot efficiency at zero-EP rate could be regarded as a strong equivalent condition for a reversible process. Here, however, we show that the detailed balance can be broken for a zero-EP rate process and even for a process achieving the Carnot efficiency at zero-EP rate in an example of a quantum-dot model. This clearly demonstrates that `Carnot efficiency at zero-EP rate or just zero-EP rate is not a sufficient condition for a reversible process.
We determine the statistics of work in isothermal volume changes of a classical ideal gas consisting of a single particle. Combining our results with the findings of Lua and Grosberg [J. Chem. Phys. B 109, 6805 (2005)] on adiabatic expansions and com
With nontrivial entropy production, first passage process is one of the most common nonequilibrium process in stochastic thermodynamics. Using one dimensional birth and death precess as a model framework, approximated expressions of mean first passag
The nonequilibrium stationary state of an irreversible spherical model is investigated on hypercubic lattices. The model is defined by Langevin equations similar to the reversible case, but with asymmetric transition rates. In spite of being irrevers
We study the efficiency at maximum power, $eta^*$, of engines performing finite-time Carnot cycles between a hot and a cold reservoir at temperatures $T_h$ and $T_c$, respectively. For engines reaching Carnot efficiency $eta_C=1-T_c/T_h$ in the rever
The entropy production rate of nonequilibrium systems is studied via the Fokker-Planck equation. This approach, based on the entropy production rate equation given by Schnakenberg from a master equation, requires information of the transition rate of