ﻻ يوجد ملخص باللغة العربية
With nontrivial entropy production, first passage process is one of the most common nonequilibrium process in stochastic thermodynamics. Using one dimensional birth and death precess as a model framework, approximated expressions of mean first passage time (FPT), mean total number of jumps (TNJ), and their coefficients of variation (CV), are obtained for the case far from equilibrium. Consequently, uncertainty relations for FPT and TNJ are presented. Generally, mean FPT decreases exponentially with entropy production, while mean TNJ decreases exponentially first and then tends to a starting site dependent limit. For forward biased process, the CV of TNJ decreases exponentially with entropy production, while that of FPT decreases exponentially first and then tends to a starting site dependent limit. For backward biased process, both CVs of FPT and TNJ tend to one for large absolute values of entropy production. Related properties about the case of equilibrium are also addressed briefly for comparison.
Levy Flights are paradigmatic generalised random walk processes, in which the independent stationary increments---the jump lengths---are drawn from an $alpha$-stable jump length distribution with long-tailed, power-law asymptote. As a result, the var
We study a stochastic process $X_t$ related to the Bessel and the Rayleigh processes, with various applications in physics, chemistry, biology, economics, finance and other fields. The stochastic differential equation is $dX_t = (nD/X_t) dt + sqrt{2D
We perform an in-depth study for mean first-passage time (MFPT)---a primary quantity for random walks with numerous applications---of maximal-entropy random walks (MERW) performed in complex networks. For MERW in a general network, we derive an expli
We investigate the statistics of encounters of a diffusing particle with different subsets of the boundary of a confining domain. The encounters with each subset are characterized by the boundary local time on that subset. We extend a recently propos
In this paper, we consider discrete time random walks on the pseudofractal scale-free web (PSFW) and we study analytically the related first passage properties. First, we classify the nodes of the PSFW into different levels and propose a method to de