ﻻ يوجد ملخص باللغة العربية
The nonequilibrium stationary state of an irreversible spherical model is investigated on hypercubic lattices. The model is defined by Langevin equations similar to the reversible case, but with asymmetric transition rates. In spite of being irreversible, we have succeeded in finding an explicit form for the stationary probability distribution, which turns out to be of the Boltzmann-Gibbs type. This enables one to evaluate the exact form of the entropy production rate at the stationary state, which is non-zero if the dynamical rules of the transition rates are asymmetric.
The entropy production rate (EPR) offers a quantitative measure of time reversal symmetry breaking in non-equilibrium systems. It can be defined either at particle level or at the level of coarse-grained fields such as density; the EPR for the latter
For the spherical model with nearest-neighbour interactions, the microcanonical entropy s(e,m) is computed analytically in the thermodynamic limit for all accessible values of the energy e and the magnetization m per spin. The entropy function is fou
The entropy production rate of nonequilibrium systems is studied via the Fokker-Planck equation. This approach, based on the entropy production rate equation given by Schnakenberg from a master equation, requires information of the transition rate of
Thermodynamic process at zero-entropy-production (EP) rate has been regarded as a reversible process. A process achieving the Carnot efficiency is also considered as a reversible process. Therefore, the condition, `Carnot efficiency at zero-EP rate c
Maximum entropy (maxEnt) inference of state probabilities using state-dependent constraints is popular in the study of complex systems. In stochastic dynamical systems, the effect of state space topology and path-dependent constraints on the inferred