ﻻ يوجد ملخص باللغة العربية
The active harnessing of quantum resources in engineered quantum devices poses unprecedented requirements on device control. Besides the residual interaction with the environment, causing environment-induced decoherence, uncontrolled parameters in the system itself -- disorder -- remains as a substantial factor limiting the precision and thus the performance of devices. These perturbations may arise, for instance, due to imperfect sample production, stray fields, or finite accuracy of control electronics. Disorder-dressed quantum evolution means a unifying framework, based on quantum master equations, to analyze how these detrimental influences cause deviations from the desired system dynamics. This description may thus contribute to unveiling and mitigating disorder effects towards robust schemes. To demonstrate the broad scope of this framework, we evaluate two distinct scenarios: a central spin immersed in an isotropic spin bath, and a random mass Dirac particle. In the former scenario, we demonstrate how the disorder average reflects purity oscillations, indicating the time- and state-dependent severity of the disorder impact. In the latter scenario, we discuss disorder-induced backscattering and disorder-induced Zitterbewegung as consequences of the breakup of spin-momentum locking.
Quantum coherences are paramount resources for applications, such as quantum-enhanced light-harvesting or quantum computing, which are fragile against environmental noise. We here derive generalized quantum master equations using perturbation theory
We analyze the disorder-perturbed transport of quantum states in the absence of backscattering. This comprises, for instance, the propagation of edge-mode wave packets in topological insulators, or the propagation of photons in inhomogeneous media. W
We present fresh evidence for the presence of discrete quantum time crystals in two spatial dimensions. Discrete time crystals are intricate quantum systems that break discrete time translation symmetry in driven quantum many-body systems undergoing
We explore experimentally a quantum metamaterial based on a superconducting chip with 25 frequency-tunable transmon qubits coupled to a common coplanar resonator. The collective bright and dark modes are probed via the microwave response, i.e., by me
We analyze the propagation of quantum states in the presence of weak disorder. In particular, we investigate the reliable transmittance of quantum states, as potential carriers of quantum information, through disorder-perturbed waveguides. We quantif