ﻻ يوجد ملخص باللغة العربية
We present fresh evidence for the presence of discrete quantum time crystals in two spatial dimensions. Discrete time crystals are intricate quantum systems that break discrete time translation symmetry in driven quantum many-body systems undergoing non-equilibrium dynamics. They are stabilized by many-body localization arising from disorder. We directly target the thermodynamic limit using instances of infinite tensor network states and implement disorder in a translationally invariant setting by introducing auxiliary systems at each site. We discuss how such disorder can be realized in programmable quantum simulators: This gives rise to the interesting situation in which a classical tensor network simulation can contribute to devising a blueprint of a quantum simulator featuring pre-thermal time crystalline dynamics, one that will yet ultimately have to be built in order to explore the stability of this phase of matter for long times.
Crystals arise as the result of the breaking of a spatial translation symmetry. Similarly, translation symmetries can also be broken in time so that discrete time crystals appear. Here, we introduce a method to describe, characterize, and explore the
We consider paradigmatic quenched disordered quantum spin models, viz., the XY spin glass and random-field XY models, and show that quenched averaged quantum correlations can exhibit the order-from-disorder phenomenon for finite-size systems as well
The discrete time crystal (DTC) is a recently discovered phase of matter that spontaneously breaks time-translation symmetry. Disorder-induced many-body-localization is required to stabilize a DTC to arbitrary times, yet an experimental investigation
Current quantum devices execute specific tasks that are hard for classical computers and have the potential to solve problems such as quantum simulation of material science and chemistry, even without error correction. For practical applications it i
We demonstrate that the prethermal regime of periodically-driven, classical many-body systems can host non-equilibrium phases of matter. In particular, we show that there exists an effective Hamiltonian, which captures the dynamics of ensembles of cl