ﻻ يوجد ملخص باللغة العربية
We analyze the propagation of quantum states in the presence of weak disorder. In particular, we investigate the reliable transmittance of quantum states, as potential carriers of quantum information, through disorder-perturbed waveguides. We quantify wave-packet distortion, backscattering, and disorder-induced dephasing, which all act detrimentally on transport, and identify conditions for reliable transmission. Our analysis relies on the treatment of the nonequilibrium dynamics of ensemble-averaged quantum states in terms of quantum master equations.
The transport of excitations governs fundamental properties of matter. Particularly rich physics emerges in the interplay between disorder and environmental noise, even in small systems such as photosynthetic biomolecules. Counterintuitively, noise c
In this communication, we numerically studied disordered quantum transport in a quantum anomalous Hall insulator-superconductor junction based on the effective edge model approach. In particular, we focus on the parameter regime with the free mean pa
We explore a small quantum refrigerator in which the working substance is made of paradigmatic nearest neighbor quantum spin models, the XYZ and the XY model with Dzyaloshinskii-Moriya interactions, consisting of two and three spins, each of which is
Understanding the dynamics of strongly interacting disordered quantum systems is one of the most challenging problems in modern science, due to features such as the breakdown of thermalization and the emergence of glassy phases of matter. We report o
We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder. For arbitrary dimension $d$ and interaction range $alpha geq d$ we analytically find a stretched exponential decay of the global