ﻻ يوجد ملخص باللغة العربية
Circular electron positron colliders, such as the CEPC and FCC-ee, have been proposed to measure Higgs boson properties precisely, test the Standard Model, search for physics beyond the Standard Model, and so on. One of the important goals of these colliders is to measure the $W$ boson mass with great precision by taking data around the $W$-pair production threshold. In this paper, the data-taking scheme is investigated to maximize the achievable precisions of the $W$ boson mass and width with a threshold scan, when various systematic uncertainties are taken into account. The study shows that an optimal and realistic data-taking scheme is to collect data at three center-of-mass energies and that precisions of 1.0 MeV and 3.4 MeV can be achieved for the mass and width of the $W$ boson, respectively, with a total integrated luminosity of $mathcal{L}=3.2$~mbox{ab}$^{-1}$ and several assumptions of the systematic uncertainty sources.
We present a measurement of the $W$-boson mass, $M_W$, using data corresponding to 2.2/fb of integrated luminosity collected in ppbar collisions at $sqrt{s}$ = 1.96 TeV with the CDF II detector at the Fermilab Tevatron. The selected sample of 470126
The $W$ boson mass is measured using proton-proton collision data at $sqrt{s}=13$ TeV corresponding to an integrated luminosity of 1.7 fb$^{-1}$ recorded during 2016 by the LHCb experiment. With a simultaneous fit of the muon $q/p_T$ distribution of
We discuss the prospects for measuring the W mass in Run II of the Tevatron and at the LHC. The basic techniques used to measure M_W are described and the statistical, theoretical and detector-related uncertainties are discussed in detail.
Jet reconstruction is critical for the precision measurement of Higgs boson properties and the electroweak observables at the CEPC. We analyze the jet energy and angular responses of benchmark 2- and 4-jet processes with fully simulated samples with
An electron-positron linear collider in the energy range between 500 and 1000 GeV is of crucial importance to precisely test the Standard Model and to explore the physics beyond it. The physics program is complementary to that of the Large Hadron Col