ﻻ يوجد ملخص باللغة العربية
The $W$ boson mass is measured using proton-proton collision data at $sqrt{s}=13$ TeV corresponding to an integrated luminosity of 1.7 fb$^{-1}$ recorded during 2016 by the LHCb experiment. With a simultaneous fit of the muon $q/p_T$ distribution of a sample of $W to mu u$ decays and the $phi^*$ distribution of a sample of $Ztomumu$ decays the $W$ boson mass is determined to be begin{equation*} m_{W} = 80354 pm 23_{rm stat} pm 10_{rm exp} pm 17_{rm theory} pm 9_{rm PDF}~mathrm{MeV}, end{equation*} where uncertainties correspond to contributions from statistical, experimental systematic, theoretical and parton distribution function sources. This is an average of results based on three recent global parton distribution function sets. The measurement agrees well with the prediction of the global electroweak fit and with previous measurements.
The Standard Model of electroweak interactions has had great success in describing the observed data over the last three decades. The precision of experimental measurements affords tests of the Standard Model at the quantum loop level beyond leading
We present a measurement of the $W$-boson mass, $M_W$, using data corresponding to 2.2/fb of integrated luminosity collected in ppbar collisions at $sqrt{s}$ = 1.96 TeV with the CDF II detector at the Fermilab Tevatron. The selected sample of 470126
The mass of the W boson has been measured by the LEP collaborations from the data recorded during the LEP2 programme at e+ e- centre of mass energies from 161 to 209 GeV, giving the result : mw = 80.450 +/- 0.039 GeV/c^2. This paper discusses the mea
We summarize and combine direct measurements of the mass of the $W$ boson in $sqrt{s} = 1.96 text{TeV}$ proton-antiproton collision data collected by CDF and D0 experiments at the Fermilab Tevatron Collider. Earlier measurements from CDF and D0 are c
The determination of the $W$-boson mass through an analysis of the decay charged-lepton transverse momentum distribution has a sizable uncertainty due to the imperfect knowledge of the relevant parton distribution functions (PDFs). In this paper, a q