ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep optical neural network by living tumour brain cells

79   0   0.0 ( 0 )
 نشر من قبل Claudio Conti
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The new era of artificial intelligence demands large-scale ultrafast hardware for machine learning. Optical artificial neural networks process classical and quantum information at the speed of light, and are compatible with silicon technology, but lack scalability and need expensive manufacturing of many computational layers. New paradigms, as reservoir computing and the extreme learning machine, suggest that disordered and biological materials may realize artificial neural networks with thousands of computational nodes trained only at the input and at the readout. Here we employ biological complex systems, i.e., living three-dimensional tumour brain models, and demonstrate a random neural network (RNN) trained to detect tumour morphodynamics via image transmission. The RNN, with the tumour spheroid as a three-dimensional deep computational reservoir, performs programmed optical functions and detects cancer morphodynamics from laser-induced hyperthermia inaccessible by optical imaging. Moreover, the RNN quantifies the effect of chemotherapy inhibiting tumour growth. We realize a non-invasive smart probe for cytotoxicity assay, which is at least one order of magnitude more sensitive with respect to conventional imaging. Our random and hybrid photonic/living system is a novel artificial machine for computing and for the real-time investigation of tumour dynamics.



قيم البحث

اقرأ أيضاً

Label-free vibrational imaging by stimulated Raman scattering (SRS) provides unprecedented insight into real-time chemical distributions in living systems. Specifically, SRS in the fingerprint region can resolve multiple chemicals in a complex bio-en vironment using specific and well-separated Raman signatures. Yet, fingerprint SRS imaging with microsecond spectral acquisition has not been achieved due to the small fingerprint Raman cross-sections and the lack of ultrafast acquisition scheme with high spectral resolution and high fidelity. Here, we report a fingerprint spectroscopic SRS platform that acquires a distortion-free SRS spectrum with 10 cm-1 spectral resolution in 20 microseconds using a lab-built ultrafast delay-line tuning system. Meanwhile, we significantly improve the signal-to-noise ratio by employing a spatial-spectral residual learning network, reaching comparable quality to images taken with two orders of magnitude longer pixel dwell times. Collectively, our system achieves reliable fingerprint spectroscopic SRS with microsecond spectral acquisition speed, enabling imaging and tracking of multiple biomolecules in samples ranging from a live single microbe to a tissue slice, which was not previously possible with SRS imaging in the highly congested carbon-hydrogen region. To show the broad utility of the approach, we have demonstrated high-speed compositional imaging of lipid metabolism in living pancreatic cancer Mia PaCa-2 cells. We then performed high-resolution mapping of cholesterol, fatty acid, and protein in the mouse whole brain. Finally, we mapped the production of two biofuels in microbial samples by harnessing the superior spectral and temporal resolutions of our system.
Much evidence seems to suggest cortex operates near a critical point, yet a single set of exponents defining its universality class has not been found. In fact, when critical exponents are estimated from data, they widely differ across species, indiv iduals of the same species, and even over time, or depending on stimulus. Interestingly, these exponents still approximately hold to a dynamical scaling relation. Here we show that the theory of quasicriticality, an organizing principle for brain dynamics, can account for this paradoxical situation. As external stimuli drive the cortex, quasicriticality predicts a departure from criticality along a Widom line with exponents that decrease in absolute value, while still holding approximately to a dynamical scaling relation. We use simulations and experimental data to confirm these predictions and describe new ones that could be tested soon.
Purpose: Functional imaging is emerging as an important tool for lung cancer treatment planning and evaluation. Compared with traditional methods such as nuclear medicine ventilation-perfusion (VQ), positron emission tomography (PET), single photon e mission computer tomography (SPECT), or magnetic resonance imaging (MRI), which use contrast agents to form 2D or 3D functional images, ventilation imaging obtained from 4DCT lung images is convenient and cost-effective because of its availability during radiation treatment planning. Current methods of obtaining ventilation images from 4DCT lung images involve deformable image registration (DIR) and a density (HU) change-based algorithm (DIR/HU); therefore the resulting ventilation images are sensitive to the selection of DIR algorithms. Methods: We propose a deep convolutional neural network (CNN)-based method to derive the ventilation images from 4DCT directly without explicit DIR, thereby improving consistency and accuracy of ventilation images. A total of 82 sets of 4DCT and ventilation images from patients with lung cancer were studied using this method. Results: The predicted images were comparable to the label images of the test data. The similarity index and correlation coefficient averaged over the ten-fold cross validation were 0.883+-0.034 and 0.878+-0.028, respectively. Conclusions: The results demonstrate that deep CNN can generate ventilation imaging from 4DCT without explicit deformable image registration, reducing the associated uncertainty.
Spectacular collective phenomena such as jamming, turbulence, wetting, and waves emerge when living cells migrate in groups.
173 - L. Tang , Z. J. Yang , T. Q. Wen 2020
An interatomic potential for Al-Tb alloy around the composition of Al90Tb10 was developed using the deep neural network (DNN) learning method. The atomic configurations and the corresponding total potential energies and forces on each atom obtained f rom ab initio molecular dynamics (AIMD) simulations are collected to train a DNN model to construct the interatomic potential for Al-Tb alloy. We show the obtained DNN model can well reproduce the energies and forces calculated by AIMD. Molecular dynamics (MD) simulations using the DNN interatomic potential also accurately describe the structural properties of Al90Tb10 liquid, such as the partial pair correlation functions (PPCFs) and the bond angle distributions, in comparison with the results from AIMD. Furthermore, the developed DNN interatomic potential predicts the formation energies of crystalline phases of Al-Tb system with the accuracy comparable to ab initio calculations. The structure factor of Al90Tb10 metallic glass obtained by MD simulation using the developed DNN interatomic potential is also in good agreement with the experimental X-ray diffraction data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا