ﻻ يوجد ملخص باللغة العربية
An interatomic potential for Al-Tb alloy around the composition of Al90Tb10 was developed using the deep neural network (DNN) learning method. The atomic configurations and the corresponding total potential energies and forces on each atom obtained from ab initio molecular dynamics (AIMD) simulations are collected to train a DNN model to construct the interatomic potential for Al-Tb alloy. We show the obtained DNN model can well reproduce the energies and forces calculated by AIMD. Molecular dynamics (MD) simulations using the DNN interatomic potential also accurately describe the structural properties of Al90Tb10 liquid, such as the partial pair correlation functions (PPCFs) and the bond angle distributions, in comparison with the results from AIMD. Furthermore, the developed DNN interatomic potential predicts the formation energies of crystalline phases of Al-Tb system with the accuracy comparable to ab initio calculations. The structure factor of Al90Tb10 metallic glass obtained by MD simulation using the developed DNN interatomic potential is also in good agreement with the experimental X-ray diffraction data.
GeTe is a prototypical phase change material of high interest for applications in optical and electronic non-volatile memories. We present an interatomic potential for the bulk phases of GeTe, which is created using a neural network (NN) representati
Potentials that could accurately describe the irradiation damage processes are highly desired to figure out the atomic-level response of various newly-discovered materials under irradiation environments. In this work, we introduce a deep-learning int
We developed new modified embedded-atom method (MEAM) interatomic potentials for the Mg-Al alloy system using a first-principles method based on density functional theory (DFT). The materials parameters, such as the cohesive energy, equilibrium atomi
We compute the thermal conductivity of water within linear response theory from equilibrium molecular dynamics simulations, by adopting two different approaches. In one, the potential energy surface (PES) is derived on the fly from the electronic gro
Accuracy of molecular dynamics simulations depends crucially on the interatomic potential used to generate forces. The gold standard would be first-principles quantum mechanics (QM) calculations, but these become prohibitively expensive at large simu