ﻻ يوجد ملخص باللغة العربية
Purpose: Functional imaging is emerging as an important tool for lung cancer treatment planning and evaluation. Compared with traditional methods such as nuclear medicine ventilation-perfusion (VQ), positron emission tomography (PET), single photon emission computer tomography (SPECT), or magnetic resonance imaging (MRI), which use contrast agents to form 2D or 3D functional images, ventilation imaging obtained from 4DCT lung images is convenient and cost-effective because of its availability during radiation treatment planning. Current methods of obtaining ventilation images from 4DCT lung images involve deformable image registration (DIR) and a density (HU) change-based algorithm (DIR/HU); therefore the resulting ventilation images are sensitive to the selection of DIR algorithms. Methods: We propose a deep convolutional neural network (CNN)-based method to derive the ventilation images from 4DCT directly without explicit DIR, thereby improving consistency and accuracy of ventilation images. A total of 82 sets of 4DCT and ventilation images from patients with lung cancer were studied using this method. Results: The predicted images were comparable to the label images of the test data. The similarity index and correlation coefficient averaged over the ten-fold cross validation were 0.883+-0.034 and 0.878+-0.028, respectively. Conclusions: The results demonstrate that deep CNN can generate ventilation imaging from 4DCT without explicit deformable image registration, reducing the associated uncertainty.
Compressed sensing magnetic resonance imaging (CS-MRI) is a theoretical framework that can accurately reconstruct images from undersampled k-space data with a much lower sampling rate than the one set by the classical Nyquist-Shannon sampling theorem
Since the advent of deep convolutional neural networks (DNNs), computer vision has seen an extremely rapid progress that has led to huge advances in medical imaging. This article does not aim to cover all aspects of the field but focuses on a particu
The new era of artificial intelligence demands large-scale ultrafast hardware for machine learning. Optical artificial neural networks process classical and quantum information at the speed of light, and are compatible with silicon technology, but la
Fetal cortical plate segmentation is essential in quantitative analysis of fetal brain maturation and cortical folding. Manual segmentation of the cortical plate, or manual refinement of automatic segmentations is tedious and time-consuming. Automati
Purpose: Correcting or reducing the effects of voxel intensity non-uniformity (INU) within a given tissue type is a crucial issue for quantitative MRI image analysis in daily clinical practice. In this study, we present a deep learning-based approach