ترغب بنشر مسار تعليمي؟ اضغط هنا

T-matrix approach to the phonon-mediated Casimir interaction

40   0   0.0 ( 0 )
 نشر من قبل Andrei Pavlov I
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a theory of the phonon mediated Casimir interaction between two point-like impurities, which is based on the single impurity scattering T-matrix approach. Within this, we show that the Casimir interaction at $T = 0$ falls off as a power law with the distance between the impurities. We find that the power in the weak and in the unitary phonon-impurity scattering limits differs, and we relate the power law to the low-energy properties of the single impurity scattering T-matrix. In addition, we consider the Casimir interaction at finite temperature and show that at finite temperatures the Casimir interaction becomes exponential at large distances.

قيم البحث

اقرأ أيضاً

The Casimir effect, a two-body interaction via vacuum fluctuations, is a fundamental property of quantum systems. In solid state physics it emerges as a long-range interaction between two impurity atoms via virtual phonons. In the classical limit for the impurity atoms in $D$ dimensions the interaction is known to follow the universal power-law $U(r)sim r^{-D}$. However, for finite masses of the impurity atoms on a lattice, it was predicted to be $U(r)sim r^{-2D-1}$ at large distances. We examine how one power-law can change into another with increase of the impurity mass and in presence of an external potential. We provide the exact solution for the system in one-dimension. At large distances indeed $U(r)sim r^{-3}$ for finite impurity masses, while for the infinite impurity masses or in an external potential it crosses over to $U(r)sim r^{-1}$ . At short distances the Casimir interaction is not universal and depends on the impurity mass and the external potential.
A selfconsistent thermodynamic $T$-matrix approach is deployed to study the microscopic properties of the quark-gluon plasma (QGP), encompassing both light- and heavy-parton degrees of freedom in a unified framework. The starting point is a relativis tic effective Hamiltonian with a universal color force. The input in-medium potential is quantitatively constrained by computing the heavy-quark (HQ) free energy from the static $T$-matrix and fitting it to pertinent lattice-QCD (lQCD) data. The corresponding $T$-matrix is then applied to compute the equation of state (EoS) of the QGP in a two-particle irreducible formalism including the full off-shell properties of the selfconsistent single-parton spectral functions and their two-body interaction. In particular, the skeleton diagram functional is fully resummed to account for emerging bound and scattering states as the critical temperature is approached from above. We find that the solution satisfying three sets of lQCD data (EoS, HQ free energy and quarkonium correlator ratios) is not unique. As limiting cases we discuss a weakly-coupled solution (WCS) which features color-potentials close to the free energy, relatively sharp quasiparticle spectral functions and weak hadronic resonances near $T_{rm c}$, and a strongly-coupled solution (SCS) with a strong color potential (much larger than the free energy) resulting in broad non-quasiparticle parton spectral functions and strong hadronic resonance states which dominate the EoS when approaching $T_{rm c}$.
Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all- to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs) trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.
Semiconductor microcavities in the strong-coupling regime exhibit an energy scale in the THz frequency range, which is fixed by the Rabi splitting between the upper and lower exciton-polariton states. While this range can be tuned by several orders o f magnitude using different excitonic medium, the transition between both polaritonic states is dipole forbidden. In this work we show that in Cadmium Telluride microcavities, the Rabi-oscillation driven THz radiation is actually active without the need for any change in the microcavity design. This feature results from the unique resonance condition which is achieved between the Rabi splitting and the phonon-polariton states, and leads to a giant enhancement of the second order nonlinearity.
114 - M. Mintchev , E. Ragoucy 2007
An algebraic framework for quantization in presence of arbitrary number of point-like defects on the line is developed. We consider a scalar field which interacts with the defects and freely propagates away of them. As an application we compute the C asimir force both at zero and finite temperature. We derive also the charge density in the Gibbs state of a complex scalar field with defects. The example of two delta-defects is treated in detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا