ﻻ يوجد ملخص باللغة العربية
An algebraic framework for quantization in presence of arbitrary number of point-like defects on the line is developed. We consider a scalar field which interacts with the defects and freely propagates away of them. As an application we compute the Casimir force both at zero and finite temperature. We derive also the charge density in the Gibbs state of a complex scalar field with defects. The example of two delta-defects is treated in detail.
The Casimir force between parallel lines in a theory describing condensed vortices in a plane is determined. We make use of the relation between a Chern-Simons-Higgs model and its dualized version, which is expressed in terms of a dual gauge field an
A geometric approach to general quantum statistical systems (including the harmonic oscillator) is presented. It is applied to Casimir energy and the dissipative system with friction. We regard the (N+1)-dimensional Euclidean {it coordinate} system (
We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can desi
We comment on the recent work [1], and on its relations with our papers [2,3] cited therein. In particular we show that, contrarily to what stated in [1], the Casimir energy density determined therein in the case of a single delta-like singularity co
We derive the Casimir force expression from Maxwells stress tensor by means of original quantum-electro-dynamical cavity modes. In contrast with similar calculations, our method is straightforward and does not rely on intricate mathematical extrapolation relations.