ترغب بنشر مسار تعليمي؟ اضغط هنا

$T$-matrix Approach to Quark-Gluon Plasma

87   0   0.0 ( 0 )
 نشر من قبل Shuai Liu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A selfconsistent thermodynamic $T$-matrix approach is deployed to study the microscopic properties of the quark-gluon plasma (QGP), encompassing both light- and heavy-parton degrees of freedom in a unified framework. The starting point is a relativistic effective Hamiltonian with a universal color force. The input in-medium potential is quantitatively constrained by computing the heavy-quark (HQ) free energy from the static $T$-matrix and fitting it to pertinent lattice-QCD (lQCD) data. The corresponding $T$-matrix is then applied to compute the equation of state (EoS) of the QGP in a two-particle irreducible formalism including the full off-shell properties of the selfconsistent single-parton spectral functions and their two-body interaction. In particular, the skeleton diagram functional is fully resummed to account for emerging bound and scattering states as the critical temperature is approached from above. We find that the solution satisfying three sets of lQCD data (EoS, HQ free energy and quarkonium correlator ratios) is not unique. As limiting cases we discuss a weakly-coupled solution (WCS) which features color-potentials close to the free energy, relatively sharp quasiparticle spectral functions and weak hadronic resonances near $T_{rm c}$, and a strongly-coupled solution (SCS) with a strong color potential (much larger than the free energy) resulting in broad non-quasiparticle parton spectral functions and strong hadronic resonance states which dominate the EoS when approaching $T_{rm c}$.

قيم البحث

اقرأ أيضاً

The large density of gluons, which is present shortly after a nuclear collision at very high energies, can lead to the formation of a condensate. We identify a gauge-invariant order parameter for condensation based on elementary non-perturbative exci tations of the plasma, which are described by spatial Wilson loops. Using real-time lattice simulations, we demonstrate that a self-similar transport process towards low momenta builds up a macroscopic zero mode. Our findings reveal intriguing similarities to recent discoveries of condensation phenomena out of equilibrium in table-top experiments with ultracold Bose gases.
63 - Jinfeng Liao 2016
Heavy-ion collision experiments at RHIC and the LHC have found a new emergent phase of QCD, a strongly coupled quark-gluon plasma (sQGP) that is distinctively different from either the low temperature hadron phase or the very high temperature weakly coupled plasma phase. Highly nontrivial emergent phenomena occur in such sQGP and two examples will be discussed in this contribution: the magnetic component of sQGP that stems from topologically nontrivial configurations in the gluon sector; and the anomalous chiral transport that arises as macroscopic manifestation of microscopic chiral anomaly in the quark sector. For both examples, their important roles in explaining pertinent heavy-ion data will be emphasized.
217 - T.P. Djun , B. Soegijono , T. Mart 2014
A Lagrangian density for viscous quark-gluon plasma has been constructed within the fluid-like QCD framework. Gauge symmetry is preserved for all terms inside the Lagrangian, except for the viscous term. The transition mechanism from point particle f ield to fluid field, and vice versa, is discussed. The energy momentum tensor that is relevant for the gluonic plasma having the nature of fluid bulk of gluon sea is derived within the model. By imposing conservation law in the energy momentum tensor, shear viscosity appears as extractable from the equation.
We study the evolution of the quark-gluon composition of the plasma created in ultra-Relativistic Heavy-Ion Collisions (uRHICs) employing a partonic transport theory that includes both elastic and inelastic collisions plus a mean fields dynamics asso ciated to the widely used quasi-particle model. The latter, able to describe lattice QCD thermodynamics, implies a chemical equilibrium ratio between quarks and gluons strongly increasing as $Trightarrow T_c$, the phase transition temperature. Accordingly we see in realistic simulations of uRHICs a rapid evolution from a gluon dominated initial state to a quark dominated plasma close to $T_c$. The quark to gluon ratio can be modified by about a factor of $sim 20$ in the bulk of the system and appears to be large also in the high $p_T$ region. We discuss how this aspect, often overflown, can be important for a quantitative study of several key issues in the QGP physics: shear viscosity, jet quenching, quarkonia suppression. Furthermore a bulk plasma made by more than $80%$ of quarks plus antiquarks provides a theoretical basis for hadronization via quark coalescence.
246 - Berndt Muller 2021
Brief review of the hadronic probes that are used to diagnose the quark-gluon plasma produced in relativistic heavy ion collisions and interrogate its properties. Emphasis is placed on probes that have significantly impacted our understanding of the nature of the quark-gluon plasma and confirmed its formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا