ﻻ يوجد ملخص باللغة العربية
Image captioning models have achieved impressive results on datasets containing limited visual concepts and large amounts of paired image-caption training data. However, if these models are to ever function in the wild, a much larger variety of visual concepts must be learned, ideally from less supervision. To encourage the development of image captioning models that can learn visual concepts from alternative data sources, such as object detection datasets, we present the first large-scale benchmark for this task. Dubbed nocaps, for novel object captioning at scale, our benchmark consists of 166,100 human-generated captions describing 15,100 images from the OpenImages validation and test sets. The associated training data consists of COCO image-caption pairs, plus OpenImages image-level labels and object bounding boxes. Since OpenImages contains many more classes than COCO, nearly 400 object classes seen in test images have no or very few associated training captions (hence, nocaps). We extend existing novel object captioning models to establish strong baselines for this benchmark and provide analysis to guide future work on this task.
Standard image captioning tasks such as COCO and Flickr30k are factual, neutral in tone and (to a human) state the obvious (e.g., a man playing a guitar). While such tasks are useful to verify that a machine understands the content of an image, they
It is highly desirable yet challenging to generate image captions that can describe novel objects which are unseen in caption-labeled training data, a capability that is evaluated in the novel object captioning challenge (nocaps). In this challenge,
Visual captioning aims to generate textual descriptions given images or videos. Traditionally, image captioning models are trained on human annotated datasets such as Flickr30k and MS-COCO, which are limited in size and diversity. This limitation hin
Novel Object Captioning is a zero-shot Image Captioning task requiring describing objects not seen in the training captions, but for which information is available from external object detectors. The key challenge is to select and describe all salien
Real-time image captioning, along with adequate precision, is the main challenge of this research field. The present work, Multiple Transformers for Self-Attention Mechanism (MTSM), utilizes multiple transformers to address these problems. The propos