ترغب بنشر مسار تعليمي؟ اضغط هنا

Divide and color representations for threshold Gaussian and stable vectors

80   0   0.0 ( 0 )
 نشر من قبل Malin Pal\\\"o Forsstr\\\"om
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the question of when a ({0,1})-valued threshold process associated to a mean zero Gaussian or a symmetric stable vector corresponds to a {it divide and color (DC) process}. This means that the process corresponding to fixing a threshold level $h$ and letting a 1 correspond to the variable being larger than $h$ arises from a random partition of the index set followed by coloring {it all} elements in each partition element 1 or 0 with probabilities $p$ and $1-p$, independently for different partition elements. While it turns out that all discrete Gaussian free fields yield a DC process when the threshold is zero, for general $n$-dimensional mean zero, variance one Gaussian vectors with nonnegative covariances, this is true in general when $n=3$ but is false for $n=4$. The behavior is quite different depending on whether the threshold level $h$ is zero or not and we show that there is no general monotonicity in $h$ in either direction. We also show that all constant variance discrete Gaussian free fields with a finite number of variables yield DC processes for large thresholds. In the stable case, for the simplest nontrivial symmetric stable vector with three variables, we obtain a phase transition in the stability exponent $alpha$ at the surprising value of $1/2$; if the index of stability is larger than $1/2$, then the process yields a DC process for large $h$ while if the index of stability is smaller than $1/2$, then this is not the case.

قيم البحث

اقرأ أيضاً

In this paper, we initiate the study of Generalized Divide and Color Models. A very special interesting case of this is the Divide and Color Model (which motivates the name we use) introduced and studied by Olle Haggstrom. In this generalized model , one starts with a finite or countable set $V$, a random partition of $V$ and a parameter $pin [0,1]$. The corresponding Generalized Divide and Color Model is the ${0,1}$-valued process indexed by $V$ obtained by independently, for each partition element in the random partition chosen, with probability $p$, assigning all the elements of the partition element the value 1, and with probability $1-p$, assigning all the elements of the partition element the value 0. Some of the questions which we study here are the following. Under what situations can different random partitions give rise to the same color process? What can one say concerning exchangeable random partitions? What is the set of product measures that a color process stochastically dominates? For random partitions which are translation invariant, what ergodic properties do the resulting color processes have? The motivation for studying these processes is twofold; on the one hand, we believe that this is a very natural and interesting class of processes that deserves investigation and on the other hand, a number of quite varied well-studied processes actually fall into this class such as (1) the Ising model, (2) the fuzzy Potts model, (3) the stationary distributions for the Voter Model, (4) random walk in random scenery and of course (5) the original Divide and Color Model.
We study the natural linear operators associated to divide and color (DC) models. The degree of nonuniqueness of the random partition yielding a DC model is directly related to the dimension of the kernel of these linear operators. We determine exact ly the dimension of these kernels as well as analyze a permutation-invariant version. We also obtain properties of the solution set for certain parameter values which will be important in (1) showing that large threshold discrete Gaussian free fields are DC models and in (2) analyzing when the Ising model with a positive external field is a DC model, both in future work. However, even here, we give an application to the Ising model on a triangle.
Let $Ainmathbb{R}^{mtimes n}$ be a matrix of rank $r$ with singular value decomposition (SVD) $A=sum_{k=1}^rsigma_k (u_kotimes v_k),$ where ${sigma_k, k=1,ldots,r}$ are singular values of $A$ (arranged in a non-increasing order) and $u_kin {mathbb R} ^m, v_kin {mathbb R}^n, k=1,ldots, r$ are the corresponding left and right orthonormal singular vectors. Let $tilde{A}=A+X$ be a noisy observation of $A,$ where $Xinmathbb{R}^{mtimes n}$ is a random matrix with i.i.d. Gaussian entries, $X_{ij}simmathcal{N}(0,tau^2),$ and consider its SVD $tilde{A}=sum_{k=1}^{mwedge n}tilde{sigma}_k(tilde{u}_kotimestilde{v}_k)$ with singular values $tilde{sigma}_1geqldotsgeqtilde{sigma}_{mwedge n}$ and singular vectors $tilde{u}_k,tilde{v}_k,k=1,ldots, mwedge n.$ The goal of this paper is to develop sharp concentration bounds for linear forms $langle tilde u_k,xrangle, xin {mathbb R}^m$ and $langle tilde v_k,yrangle, yin {mathbb R}^n$ of the perturbed (empirical) singular vectors in the case when the singular values of $A$ are distinct and, more generally, concentration bounds for bilinear forms of projection operators associated with SVD. In particular, the results imply upper bounds of the order $Obiggl(sqrt{frac{log(m+n)}{mvee n}}biggr)$ (holding with a high probability) on $$max_{1leq ileq m}big|big<tilde{u}_k-sqrt{1+b_k}u_k,e_i^mbig>big| {rm and} max_{1leq jleq n}big|big<tilde{v}_k-sqrt{1+b_k}v_k,e_j^nbig>big|,$$ where $b_k$ are properly chosen constants characterizing the bias of empirical singular vectors $tilde u_k, tilde v_k$ and ${e_i^m,i=1,ldots,m}, {e_j^n,j=1,ldots,n}$ are the canonical bases of $mathbb{R}^m, {mathbb R}^n,$ respectively.
We study distributions of random vectors whose components are second order polynomials in Gaussian random variables. Assuming that the law of such a vector is not absolutely continuous with respect to Lebesgue measure, we derive some interesting cons equences. Our second result gives a characterization of limits in law for sequences of such vectors.
We investigate Fourier coefficients of automorphic forms on split simply-laced Lie groups G. We show that for automorphic representations of small Gelfand-Kirillov dimension the Fourier coefficients are completely determined by certain degenerate Whi ttaker vectors on G. Although we expect our results to hold for arbitrary simply-laced groups, we give complete proofs only for G=SL(3) and G=SL(4). This is based on a method of Ginzburg that associates Fourier coefficients of automorphic forms with nilpotent orbits of G. Our results complement and extend recent results of Miller and Sahi. We also use our formalism to calculate various local (real and p-adic) spherical vectors of minimal representations of the exceptional groups E_6, E_7, E_8 using global (adelic) degenerate Whittaker vectors, correctly reproducing existing results for such spherical vectors obtained by very different methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا