ﻻ يوجد ملخص باللغة العربية
We study the question of when a ({0,1})-valued threshold process associated to a mean zero Gaussian or a symmetric stable vector corresponds to a {it divide and color (DC) process}. This means that the process corresponding to fixing a threshold level $h$ and letting a 1 correspond to the variable being larger than $h$ arises from a random partition of the index set followed by coloring {it all} elements in each partition element 1 or 0 with probabilities $p$ and $1-p$, independently for different partition elements. While it turns out that all discrete Gaussian free fields yield a DC process when the threshold is zero, for general $n$-dimensional mean zero, variance one Gaussian vectors with nonnegative covariances, this is true in general when $n=3$ but is false for $n=4$. The behavior is quite different depending on whether the threshold level $h$ is zero or not and we show that there is no general monotonicity in $h$ in either direction. We also show that all constant variance discrete Gaussian free fields with a finite number of variables yield DC processes for large thresholds. In the stable case, for the simplest nontrivial symmetric stable vector with three variables, we obtain a phase transition in the stability exponent $alpha$ at the surprising value of $1/2$; if the index of stability is larger than $1/2$, then the process yields a DC process for large $h$ while if the index of stability is smaller than $1/2$, then this is not the case.
In this paper, we initiate the study of Generalized Divide and Color Models. A very special interesting case of this is the Divide and Color Model (which motivates the name we use) introduced and studied by Olle Haggstrom. In this generalized model
We study the natural linear operators associated to divide and color (DC) models. The degree of nonuniqueness of the random partition yielding a DC model is directly related to the dimension of the kernel of these linear operators. We determine exact
Let $Ainmathbb{R}^{mtimes n}$ be a matrix of rank $r$ with singular value decomposition (SVD) $A=sum_{k=1}^rsigma_k (u_kotimes v_k),$ where ${sigma_k, k=1,ldots,r}$ are singular values of $A$ (arranged in a non-increasing order) and $u_kin {mathbb R}
We study distributions of random vectors whose components are second order polynomials in Gaussian random variables. Assuming that the law of such a vector is not absolutely continuous with respect to Lebesgue measure, we derive some interesting cons
We investigate Fourier coefficients of automorphic forms on split simply-laced Lie groups G. We show that for automorphic representations of small Gelfand-Kirillov dimension the Fourier coefficients are completely determined by certain degenerate Whi