ترغب بنشر مسار تعليمي؟ اضغط هنا

An analysis of the induced linear operators associated to divide and color models

64   0   0.0 ( 0 )
 نشر من قبل Malin Pal\\\"o Forsstr\\\"om
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the natural linear operators associated to divide and color (DC) models. The degree of nonuniqueness of the random partition yielding a DC model is directly related to the dimension of the kernel of these linear operators. We determine exactly the dimension of these kernels as well as analyze a permutation-invariant version. We also obtain properties of the solution set for certain parameter values which will be important in (1) showing that large threshold discrete Gaussian free fields are DC models and in (2) analyzing when the Ising model with a positive external field is a DC model, both in future work. However, even here, we give an application to the Ising model on a triangle.



قيم البحث

اقرأ أيضاً

In this paper, we initiate the study of Generalized Divide and Color Models. A very special interesting case of this is the Divide and Color Model (which motivates the name we use) introduced and studied by Olle Haggstrom. In this generalized model , one starts with a finite or countable set $V$, a random partition of $V$ and a parameter $pin [0,1]$. The corresponding Generalized Divide and Color Model is the ${0,1}$-valued process indexed by $V$ obtained by independently, for each partition element in the random partition chosen, with probability $p$, assigning all the elements of the partition element the value 1, and with probability $1-p$, assigning all the elements of the partition element the value 0. Some of the questions which we study here are the following. Under what situations can different random partitions give rise to the same color process? What can one say concerning exchangeable random partitions? What is the set of product measures that a color process stochastically dominates? For random partitions which are translation invariant, what ergodic properties do the resulting color processes have? The motivation for studying these processes is twofold; on the one hand, we believe that this is a very natural and interesting class of processes that deserves investigation and on the other hand, a number of quite varied well-studied processes actually fall into this class such as (1) the Ising model, (2) the fuzzy Potts model, (3) the stationary distributions for the Voter Model, (4) random walk in random scenery and of course (5) the original Divide and Color Model.
We study the question of when a ({0,1})-valued threshold process associated to a mean zero Gaussian or a symmetric stable vector corresponds to a {it divide and color (DC) process}. This means that the process corresponding to fixing a threshold leve l $h$ and letting a 1 correspond to the variable being larger than $h$ arises from a random partition of the index set followed by coloring {it all} elements in each partition element 1 or 0 with probabilities $p$ and $1-p$, independently for different partition elements. While it turns out that all discrete Gaussian free fields yield a DC process when the threshold is zero, for general $n$-dimensional mean zero, variance one Gaussian vectors with nonnegative covariances, this is true in general when $n=3$ but is false for $n=4$. The behavior is quite different depending on whether the threshold level $h$ is zero or not and we show that there is no general monotonicity in $h$ in either direction. We also show that all constant variance discrete Gaussian free fields with a finite number of variables yield DC processes for large thresholds. In the stable case, for the simplest nontrivial symmetric stable vector with three variables, we obtain a phase transition in the stability exponent $alpha$ at the surprising value of $1/2$; if the index of stability is larger than $1/2$, then the process yields a DC process for large $h$ while if the index of stability is smaller than $1/2$, then this is not the case.
We connect boundary conditions for one-sided pseudo-differential operators with the generators of modified one-sided Levy processes. On one hand this allows modellers to use appropriate boundary conditions with confidence when restricting the modelli ng domain. On the other hand it allows for numerical techniques based on differential equation solvers to obtain fast approximations of densities or other statistical properties of restricted one-sided Levy processes encountered, for example, in finance. In particular we identify a new nonlocal mass conserving boundary condition by showing it corresponds to fast-forwarding, i.e. removing the time the process spends outside the domain. We treat all combinations of killing, reflecting and fast-forwarding boundary conditions. In Part I we show wellposedness of the backward and forward Cauchy problems with a one-sided pseudo-differential operator with boundary conditions as generator. We do so by showing convergence of Feller semigroups based on grid point approximations of the modified Levy process. In Part II we show that the limiting Feller semigroup is indeed the semigroup associated with the modified Levy process by showing continuity of the modifications with respect to the Skorokhod topology.
We connect boundary conditions for one-sided pseudo-differential operators with the generators of modified one-sided Levy processes. On one hand this allows modellers to use appropriate boundary conditions with confidence when restricting the modelli ng domain. On the other hand it allows for numerical techniques based on differential equation solvers to obtain fast approximations of densities or other statistical properties of restricted one-sided Levy processes encountered, for example, in finance. In particular we identify a new nonlocal mass conserving boundary condition by showing it corresponds to fast-forwarding, i.e. removing the time the process spends outside the domain. We treat all combinations of killing, reflecting and fast-forwarding boundary conditions. In Part I we show wellposedness of the backward and forward Cauchy problems with a one-sided pseudo-differential operator with boundary conditions as generator. We do so by showing convergence of Feller semigroups based on grid point approximations of the modified Levy process. In Part II we show that the limiting Feller semigroup is indeed the semigroup associated with the modified Levy process by showing continuity of the modifications with respect to the Skorokhod topology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا