ﻻ يوجد ملخص باللغة العربية
Let $Ainmathbb{R}^{mtimes n}$ be a matrix of rank $r$ with singular value decomposition (SVD) $A=sum_{k=1}^rsigma_k (u_kotimes v_k),$ where ${sigma_k, k=1,ldots,r}$ are singular values of $A$ (arranged in a non-increasing order) and $u_kin {mathbb R}^m, v_kin {mathbb R}^n, k=1,ldots, r$ are the corresponding left and right orthonormal singular vectors. Let $tilde{A}=A+X$ be a noisy observation of $A,$ where $Xinmathbb{R}^{mtimes n}$ is a random matrix with i.i.d. Gaussian entries, $X_{ij}simmathcal{N}(0,tau^2),$ and consider its SVD $tilde{A}=sum_{k=1}^{mwedge n}tilde{sigma}_k(tilde{u}_kotimestilde{v}_k)$ with singular values $tilde{sigma}_1geqldotsgeqtilde{sigma}_{mwedge n}$ and singular vectors $tilde{u}_k,tilde{v}_k,k=1,ldots, mwedge n.$ The goal of this paper is to develop sharp concentration bounds for linear forms $langle tilde u_k,xrangle, xin {mathbb R}^m$ and $langle tilde v_k,yrangle, yin {mathbb R}^n$ of the perturbed (empirical) singular vectors in the case when the singular values of $A$ are distinct and, more generally, concentration bounds for bilinear forms of projection operators associated with SVD. In particular, the results imply upper bounds of the order $Obiggl(sqrt{frac{log(m+n)}{mvee n}}biggr)$ (holding with a high probability) on $$max_{1leq ileq m}big|big<tilde{u}_k-sqrt{1+b_k}u_k,e_i^mbig>big| {rm and} max_{1leq jleq n}big|big<tilde{v}_k-sqrt{1+b_k}v_k,e_j^nbig>big|,$$ where $b_k$ are properly chosen constants characterizing the bias of empirical singular vectors $tilde u_k, tilde v_k$ and ${e_i^m,i=1,ldots,m}, {e_j^n,j=1,ldots,n}$ are the canonical bases of $mathbb{R}^m, {mathbb R}^n,$ respectively.
We study distributions of random vectors whose components are second order polynomials in Gaussian random variables. Assuming that the law of such a vector is not absolutely continuous with respect to Lebesgue measure, we derive some interesting cons
We study the question of when a ({0,1})-valued threshold process associated to a mean zero Gaussian or a symmetric stable vector corresponds to a {it divide and color (DC) process}. This means that the process corresponding to fixing a threshold leve
We consider the asymptotic behavior of the fluctuations for the empirical measures of interacting particle systems with singular kernels. We prove that the sequence of fluctuation processes converges in distribution to a generalized Ornstein-Uhlenbec
A differential 1-form $alpha$ on a manifold of odd dimension $2n+1$, which satisfies the contact condition $alpha wedge (dalpha)^n eq 0$ almost everywhere, but which vanishes at a point $O$, i.e. $alpha (O) = 0$, is called a textit{singular contact
We study the regularity of densities of distributions that are polynomial images of the standard Gaussian measure on $mathbb{R}^n$. We assume that the degree of a polynomial is fixed and that each variable enters to a power bounded by another fixed number.