ﻻ يوجد ملخص باللغة العربية
Since the discovery of SN (supernova) 1987A, the number of Type II-peculiar SNe has grown, revealing a rich diversity in photometric and spectroscopic properties. In this study, using a single 15Msun low-metallicity progenitor that dies as a blue supergiant (BSG), we have generated explosions with a range of energies and 56Ni masses. We then performed the radiative transfer modeling with CMFGEN from 1d until 300d after explosion. Our models yield light curves that rise to optical maximum in ~100d, with a similar brightening rate, and with a peak absolute V-band magnitude spanning from -14 to -16.5mag. All models follow a similar color evolution, entering the recombination phase within a few days of explosion, and reddening further until the nebular phase. Their spectral evolution is analogous, mostly differing in line profile width. With this model set, we study the Type II-pec SNe 1987A, 2000cb, 2006V, 2006au, 2009E, and 2009mw. Their photometric and spectroscopic diversity suggest that there is no prototypical Type II-pec SN. These SNe brighten to maximum faster than our model set, except perhaps SN2009mw. The spectral evolution of SN1987A conflicts with other observations and with model predictions from 20d until maximum: Halpha narrows and weakens while BaII lines strengthen faster than predicted, which we interpret as signatures of clumping. SN2000cb rises to maximum in only 20d and shows weak BaII lines. Its spectral evolution is well matched by an energetic ejecta but the light curve may require asymmetry. The persistent blue color, narrow lines, and weak Halpha absorption, seen in SN2006V conflicts with expectations for a BSG explosion powered by 56Ni and may require an alternative power source. In addition to diversity arising from different BSG progenitors, we surmise that their ejecta are asymmetric, clumped, and, in some cases, not solely powered by 56Ni decay [abridged].
There are a growing number of nearby SNe for which the progenitor star is detected in archival pre-explosion imaging. From these images it is possible to measure the progenitors brightness a few years before explosion, and ultimately estimate its ini
Type Ia supernovae (SNe Ia) are manifestations of stars deficient of hydrogen and helium disrupting in a thermonuclear runaway. While explosions of carbon-oxygen white dwarfs are thought to account for the majority of events, part of the observed div
Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova has converged to 8 +/- 1
Betelgeuse, a nearby red supergiant, is a runaway star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the
We compute an extensive set of early-time spectra of supernovae interacting with circumstellar material using the radiative transfer code CMFGEN. Our models are applicable to events observed from 1 to a few days after explosion. Using these models, w