ترغب بنشر مسار تعليمي؟ اضغط هنا

Type Ia supernovae from non-accreting progenitors

97   0   0.0 ( 0 )
 نشر من قبل John Antoniadis
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Type Ia supernovae (SNe Ia) are manifestations of stars deficient of hydrogen and helium disrupting in a thermonuclear runaway. While explosions of carbon-oxygen white dwarfs are thought to account for the majority of events, part of the observed diversity may be due to varied progenitor channels. We demonstrate that helium stars with masses between $sim$1.8 and 2.5 M$_{odot}$ may evolve into highly degenerate, near-Chandrasekhar mass cores with helium-free envelopes that subsequently ignite carbon and oxygen explosively at densities $sim(1.8-5.9)times 10^{9}$g cm$^{-3}$. This happens either due to core growth from shell burning (when the core has a hybrid CO/NeO composition), or following ignition of residual carbon triggered by exothermic electron captures on $^{24}$Mg (for a NeOMg-dominated composition). We argue that the resulting thermonuclear runaways is likely to prevent core collapse, leading to the complete disruption of the star. The available nuclear energy at the onset of explosive oxygen burning suffices to create ejecta with a kinetic energy of $sim$10$^{51}$ erg, as in typical SNe Ia. Conversely, if these runaways result in partial disruptions, the corresponding transients would resemble SN Iax events similar to SN 2002cx. If helium stars in this mass range indeed explode as SNe Ia, then the frequency of events would be comparable to the observed SN Ib/c rates, thereby sufficing to account for the majority of SNe Ia in star-forming galaxies.

قيم البحث

اقرأ أيضاً

We review all the models proposed for the progenitor systems of Type Ia supernovae and discuss the strengths and weaknesses of each scenario when confronted with observations. We show that all scenarios encounter at least a few serious diffculties, i f taken to represent a comprehensive model for the progenitors of all Type Ia supernovae (SNe Ia). Consequently, we tentatively conclude that there is probably more than one channel leading SNe Ia. While the single-degenerate scenario (in which a single white dwarf accretes mass from a normal stellar companion) has been studied in some detail, the other scenarios will need a similar level of scrutiny before any firm conclusions can be drawn.
The origin of the progenitors of type Ia supernovae (SNe Ia) is still uncertain. The core-degenerate (CD) scenario has been proposed as an alternative way for the production of SNe Ia. In this scenario, SNe Ia are formed at the final stage of common- envelope evolution from a merger of a carbon-oxygen white dwarf (CO WD) with the CO core of an asymptotic giant branch companion. However, the birthrates of SNe Ia from this scenario are still not well determined. In this work, we performed a detailed investigation on the CD scenario based on a binary population synthesis approach. The SN Ia delay times from this scenario are basically in the range of 90Myr-2500Myr, mainly contributing to the observed SNe Ia with short and intermediate delay times although this scenario can also produce some old SNe Ia. Meanwhile, our work indicates that the Galactic birthrates of SNe Ia from this scenario are no more than 20% of total SNe Ia due to more careful treatment of mass transfer. Although the SN Ia birthrates in the present work are lower than those in Ilkov & Soker, the CD scenario cannot be ruled out as a viable mechanism for the formation of SNe Ia. Especially, SNe Ia with circumstellar material from this scenario contribute to 0.7-10% of total SNe Ia, which means that the CD scenario can reproduce the observed birthrates of SNe Ia like PTF 11kx. We also found that SNe Ia happen systemically earlier for a high value of metallicity and their birthrates increase with metallicity.
Double white dwarf binaries with merger timescales smaller than the Hubble time and with a total mass near the Chandrasekhar limit (i.e. classical Chandrasekhar population) or with high-mass primaries (i.e. sub-Chandrasekhar population) are potential supernova type Ia (SNIa) progenitors. However, we have not yet unambiguously confirmed the existence of these objects observationally, a fact that has been often used to criticise the relevance of double white dwarfs for producing SNIa. We analyse whether this lack of detections is due to observational effects. To that end we simulate the double white dwarf binary population in the Galaxy and obtain synthetic spectra for the SNIa progenitors. We demonstrate that their identification, based on the detection of Halpha double-lined profiles arising from the two white dwarfs in the synthetic spectra, is extremely challenging due to their intrinsic faintness. This translates into an observational probability of finding double white dwarf SNIa progenitors in the Galaxy of (2.1+-1.0)x10^{-5} and (0.8+-0.4)x10^{-5} for the classical Chandrasekhar and the sub-Chandrasekhar progenitor populations, respectively. Eclipsing double white dwarf SNIa progenitors are found to suffer from the same observational effect. The next generation of large-aperture telescopes are expected to help in increasing the probability for detection by ~1 order of magnitude. However, it is only with forthcoming observations such as those provided by LISA that we expect to unambiguously confirm or disprove the existence of double white dwarf SNIa progenitors and to test their importance for producing SNIa.
The double-degenerate (DD) model, involving the merging of massive double carbon-oxygen white dwarfs (CO WDs) driven by gravitational wave radiation, is one of the classical pathways for the formation of type Ia supernovae (SNe Ia). Recently, it has been proposed that the WD+He subgiant channel has a significant contribution to the production of massive double WDs, in which the primary WD accumulates mass by accreting He-rich matter from a He subgiant. We evolved about 1800 CO WD+He star systems and obtained a large and dense grid for producing SNe Ia through the DD model. We then performed a series of binary population synthesis simulations for the DD model, in which the WD+He subgiant channel is calculated by interpolations in this grid. According to our standard model, the Galactic birthrate of SNe Ia is about 2.4*10^{-3} yr^{-1} for the WD+He subgiant channel of the DD model; the total birthrate is about 3.7*10^{-3} yr^{-1} for all channels, reproducing that of observations. Previous theoretical models still have deficit with the observed SNe Ia with delay times <1 Gyr and >8 Gyr. After considering the WD+He subgiant channel, we found that the delay time distributions is comparable with the observed results. Additionally, some recent studies proposed that the violent WD mergers are more likely to produce SNe Ia based on the DD model. We estimated that the violent mergers through the DD model may only contribute to about 16% of all SNe Ia.
A non-local-thermodynamic-equilibrium (NLTE) level population model of the first and second ionisation stages of iron, nickel and cobalt is used to fit a sample of XShooter optical + near-infrared (NIR) spectra of Type Ia supernovae (SNe Ia). From th e ratio of the NIR lines to the optical lines limits can be placed on the temperature and density of the emission region. We find a similar evolution of these parameters across our sample. Using the evolution of the Fe II 12$,$570$,mathring{A},$to 7$,$155$,mathring{A},$line as a prior in fits of spectra covering only the optical wavelengths we show that the 7200$,mathring{A},$feature is fully explained by [Fe II] and [Ni II] alone. This approach allows us to determine the abundance of Ni II$,$/$,$Fe II for a large sample of 130 optical spectra of 58 SNe Ia with uncertainties small enough to distinguish between Chandrasekhar mass (M$_{text{Ch}}$) and sub-Chandrasekhar mass (sub-M$_{text{Ch}}$) explosion models. We conclude that the majority (85$%$) of normal SNe Ia have a Ni/Fe abundance that is in agreement with predictions of sub-M$_{text{Ch}}$ explosion simulations of $sim Z_odot$ progenitors. Only a small fraction (11$%$) of objects in the sample have a Ni/Fe abundance in agreement with M$_{text{Ch}}$ explosion models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا