ﻻ يوجد ملخص باللغة العربية
There are a growing number of nearby SNe for which the progenitor star is detected in archival pre-explosion imaging. From these images it is possible to measure the progenitors brightness a few years before explosion, and ultimately estimate its initial mass. Previous work has shown that II-P and II-L supernovae (SNe) have Red Supergiant (RSG) progenitors, and that the range of initial masses for these progenitors seems to be limited to $<$17M$_odot$. This is in contrast with the cutoff of 25-30M$_odot$ predicted by evolutionary models, a result which is termed the Red Supergiant Problem. Here we investigate one particular source of systematic error present in converting pre-explosion photometry into an initial mass, that of the bolometric correction (BC) used to convert a single-band flux into a bolometric luminosity. We show, using star clusters, that RSGs evolve to later spectral types as they approach SN, which in turn causes the BC to become larger. Failure to account for this results in a systematic underestimate of a stars luminosity, and hence its initial mass. Using our empirically motivated BCs we reappraise the II-P and II-L SNe that have their progenitors detected in pre-explosion imaging. Fitting an initial mass function to these updated masses results in an increased upper mass cutoff of $M_{rm hi}$=$19.0^{+2.5}_{-1.3}$M$_odot$, with a 95% upper confidence limit of $<$27M$_odot$. Accounting for finite sample size effects and systematic uncertainties in the mass-luminosity relationship raises the cutoff to $M_{rm hi}$=25M$_odot$ ($<$33M$_odot$, 95% confidence). We therefore conclude that there is currently no strong evidence for `missing high mass progenitors to core-collapse SNe.
By comparing the properties of Red Supergiant (RSG) supernova progenitors to those of field RSGs, it has been claimed that there is an absence of progenitors with luminosities $L$ above $log(L/L_odot) > 5.2$. This is in tension with the empirical upp
Context. The companions of the exploding carbon-oxygen white dwarfs (CO WDs) for producing type Ia supernovae (SNe Ia) are still not conclusively confirmed. A red-giant (RG) star has been suggested to be the mass donor of the exploding WD, named as t
We review all the models proposed for the progenitor systems of Type Ia supernovae and discuss the strengths and weaknesses of each scenario when confronted with observations. We show that all scenarios encounter at least a few serious diffculties, i
Since the discovery of SN (supernova) 1987A, the number of Type II-peculiar SNe has grown, revealing a rich diversity in photometric and spectroscopic properties. In this study, using a single 15Msun low-metallicity progenitor that dies as a blue sup
Type IIb supernovae (SNe IIb) present a unique opportunity for investigating the evolutionary channels and mechanisms governing the evolution of stripped-envelope SN progenitors due to a variety of observational constraints available. Comparison of t