ﻻ يوجد ملخص باللغة العربية
We provide a mean-field description for a leader-follower dynamics with mass transfer among the two populations. This model allows the transition from followers to leaders and vice versa, with scalar-valued transition rates depending nonlinearly on the global state of the system at each time. We first prove the existence and uniqueness of solutions for the leader-follower dynamics, under suitable assumptions. We then establish, for an appropriate choice of the initial datum, the equivalence of the system with a PDE-ODE system, that consists of a continuity equation over the state space and an ODE for the transition from leader to follower or vice versa. We further introduce a stochastic process approximating the PDE, together with a jump process that models the switch between the two populations. Using a propagation of chaos argument, we show that the particle system generated by these two processes converges in probability to a solution of the PDE-ODE system. Finally, several numerical simulations of social interactions dynamics modeled by our system are discussed.
We use methods from combinatorics and algebraic statistics to study analogues of birth-and-death processes that have as their state space a finite subset of the $m$-dimensional lattice and for which the $m$ matrices that record the transition probabi
In this paper, a baseline model termed as random birth-and-death network model (RBDN) is considered, in which at each time step, a new node is added into the network with probability p (0<p <1) connect it with m old nodes uniformly, or an existing no
In this paper, we study a model for opinion dynamics where the influence weights of agents evolve in time via an equation which is coupled with the opinions evolution. We explore the natural question of the large population limit with two approaches:
We consider stochastic UL and LU block factorizations of the one-step transition probability matrix for a discrete-time quasi-birth-and-death process, namely a stochastic block tridiagonal matrix. The simpler case of random walks with only nearest ne
The dynamics of populations is frequently subject to intrinsic noise. At the same time unknown interaction networks or rate constants can present quenched uncertainty. Existing approaches often involve repeated sampling of the quenched disorder and t