ترغب بنشر مسار تعليمي؟ اضغط هنا

Birth-death processes with quenched uncertainty and intrinsic noise

233   0   0.0 ( 0 )
 نشر من قبل Tobias Galla
 تاريخ النشر 2016
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English
 تأليف Tobias Galla




اسأل ChatGPT حول البحث

The dynamics of populations is frequently subject to intrinsic noise. At the same time unknown interaction networks or rate constants can present quenched uncertainty. Existing approaches often involve repeated sampling of the quenched disorder and then running the stochastic birth-death dynamics on these samples. In this paper we take a different view, and formulate an effective jump process, representative of the ensemble of quenched interactions as a whole. Using evolutionary games with random payoff matrices as an example, we develop an algorithm to simulate this process, and we discuss diffusion approximations in the limit of weak intrinsic noise.



قيم البحث

اقرأ أيضاً

We consider extinction times for a class of birth-death processes commonly found in applications, where there is a control parameter which determines whether the population quickly becomes extinct, or rather persists for a long time. We give an exact expression for the discrete case and its asymptotic expansion for large values of the population. We have results below the threshold, at the threshold, and above the threshold (where there is a quasi-stationary state and the extinction time is very long.) We show that the Fokker-Planck approximation is valid only quite near the threshold. We compare our analytical results to numerical simulations for the SIS epidemic model, which is in the class that we treat. This is an interesting example of the delicate relationship between discrete and continuum treatments of the same problem.
We use methods from combinatorics and algebraic statistics to study analogues of birth-and-death processes that have as their state space a finite subset of the $m$-dimensional lattice and for which the $m$ matrices that record the transition probabi lities in each of the lattice directions commute pairwise. One reason such processes are of interest is that the transition matrix is straightforward to diagonalize, and hence it is easy to compute $n$ step transition probabilities. The set of commuting birth-and-death processes decomposes as a union of toric varieties, with the main component being the closure of all processes whose nearest neighbor transition probabilities are positive. We exhibit an explicit monomial parametrization for this main component, and we explore the boundary components using primary decomposition.
94 - Tobias Galla 2018
We use dynamical generating functionals to study the stability and size of communities evolving in Lotka-Volterra systems with random interaction coefficients. The size of the eco-system is not set from the beginning. Instead, we start from a set of possible species, which may undergo extinction. How many species survive depends on the properties of the interaction matrix; the size of the resulting food web at stationarity is a property of the system itself in our model, and not a control parameter as in most studies based on random matrix theory. We find that prey-predator relations enhance stability, and that variability of species interactions promotes instability. Complexity of inter-species couplings leads to reduced sizes of ecological communities. Dynamically evolved community size and stability are hence positively correlated.
58 - Song Xu , Tom Chou 2018
Power-law-distributed species counts or clone counts arise in many biological settings such as multispecies cell populations, population genetics, and ecology. This empirical observation that the number of species $c_{k}$ represented by $k$ individua ls scales as negative powers of $k$ is also supported by a series of theoretical birth-death-immigration (BDI) models that consistently predict many low-population species, a few intermediate-population species, and very high-population species. However, we show how a simple global population-dependent regulation in a neutral BDI model destroys the power law distributions. Simulation of the regulated BDI model shows a high probability of observing a high-population species that dominates the total population. Further analysis reveals that the origin of this breakdown is associated with the failure of a mean-field approximation for the expected species abundance distribution. We find an accurate estimate for the expected distribution $langle c_k rangle$ by mapping the problem to a lower-dimensional Moran process, allowing us to also straightforwardly calculate the covariances $langle c_k c_ell rangle$. Finally, we exploit the concepts associated with energy landscapes to explain the failure of the mean-field assumption by identifying a phase transition in the quasi-steady-state species counts triggered by a decreasing immigration rate.
A feature of human creativity is the ability to take a subset of existing items (e.g. objects, ideas, or techniques) and combine them in various ways to give rise to new items, which, in turn, fuel further growth. Occasionally, some of these items ma y also disappear (extinction). We model this process by a simple stochastic birth--death model, with non-linear combinatorial terms in the growth coefficients to capture the propensity of subsets of items to give rise to new items. In its simplest form, this model involves just two parameters $(P, alpha)$. This process exhibits a characteristic hockey-stick behaviour: a long period of relatively little growth followed by a relatively sudden explosive increase. We provide exact expressions for the mean and variance of this time to explosion and compare the results with simulations. We then generalise our results to allow for more general parameter assignments, and consider possible applications to data involving human productivity and creativity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا