ﻻ يوجد ملخص باللغة العربية
The dynamics of populations is frequently subject to intrinsic noise. At the same time unknown interaction networks or rate constants can present quenched uncertainty. Existing approaches often involve repeated sampling of the quenched disorder and then running the stochastic birth-death dynamics on these samples. In this paper we take a different view, and formulate an effective jump process, representative of the ensemble of quenched interactions as a whole. Using evolutionary games with random payoff matrices as an example, we develop an algorithm to simulate this process, and we discuss diffusion approximations in the limit of weak intrinsic noise.
We consider extinction times for a class of birth-death processes commonly found in applications, where there is a control parameter which determines whether the population quickly becomes extinct, or rather persists for a long time. We give an exact
We use methods from combinatorics and algebraic statistics to study analogues of birth-and-death processes that have as their state space a finite subset of the $m$-dimensional lattice and for which the $m$ matrices that record the transition probabi
We use dynamical generating functionals to study the stability and size of communities evolving in Lotka-Volterra systems with random interaction coefficients. The size of the eco-system is not set from the beginning. Instead, we start from a set of
Power-law-distributed species counts or clone counts arise in many biological settings such as multispecies cell populations, population genetics, and ecology. This empirical observation that the number of species $c_{k}$ represented by $k$ individua
A feature of human creativity is the ability to take a subset of existing items (e.g. objects, ideas, or techniques) and combine them in various ways to give rise to new items, which, in turn, fuel further growth. Occasionally, some of these items ma