ترغب بنشر مسار تعليمي؟ اضغط هنا

Protocol for Energy-Efficiency using Robust Control on WSN

30   0   0.0 ( 0 )
 نشر من قبل Jonathan M. Palma
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The present work analyzes the feasibility of obtaining a single controller (robust), with theoretical guarantees of stability and performance, valid for a total set of network configurations in designed the controller for an uncertain success probability obtain the protocol for Energy-Efficiency in Networked Control System NCS. In particular, this work investigates the performance degradation, in terms of the $mathcal{H}_{infty}$ guaranteed cost, between optimal controller design (precisely known probability) and the sub-optimal controller design (robust to probability uncertainties). The feasibility of the proposed methodology is validated by a numerical example.



قيم البحث

اقرأ أيضاً

In order to enhance the performance of cyber-physical systems, this paper proposes the integrated de-sign of distributed controllers for distributed plants andthe control of the communication network. Conventionaldesign methods use static interfaces between both enti-ties and therefore rely on worst-case estimations of com-munication delay, often leading to conservative behaviorof the overall system. By contrast, the present approachestablishes a robust distributed model-predictive controlscheme, in which the local subsystem controllers oper-ate under the assumption of a variable communicationschedule that is predicted by a network controller. Us-ing appropriate models for the communication network,the network controller applies a predictive network policyfor scheduling the communication among the subsystemcontrollers across the network. Given the resulting time-varying predictions of the age of information, the papershows under which conditions the subsystem controllerscan robustly stabilize the distributed system. To illustratethe approach, the paper also reports on the application to avehicle platooning scenario.
A functional electrical stimulation (FES)-based tracking controller is developed to enable cycling based on a strategy to yield force direction efficiency by exploiting antagonistic bi-articular muscles. Given the input redundancy naturally occurring among multiple muscle groups, the force direction at the pedal is explicitly determined as a means to improve the efficiency of cycling. A model of a stationary cycle and rider is developed as a closed-chain mechanism. A strategy is then developed to switch between muscle groups for improved efficiency based on the force direction of each muscle group. Stability of the developed controller is analyzed through Lyapunov-based methods.
Owing to the call for energy efficiency, the need to optimize the energy consumption of commercial buildings-- responsible for over 40% of US energy consumption--has recently gained significant attention. Moreover, the ability to participate in the r etail electricity markets through proactive demand-side participation has recently led to development of economic model predictive control (EMPC) for buildings Heating, Ventilation, and Air Conditioning (HVAC) system. The objective of this paper is to develop a price-sensitive operational model for buildings HVAC systems while considering inflexible loads and other distributed energy resources (DERs) such as photovoltaic (PV) generation and battery storage for the buildings. A Nonlinear Economic Model Predictive Controller (NL-EMPC) is presented to minimize the net cost of energy usage by buildings HVAC system while satisfying the comfort-level of buildings occupants. The efficiency of the proposed NL-EMPC controller is evaluated using several simulation case studies.
This work studies the design of safe control policies for large-scale non-linear systems operating in uncertain environments. In such a case, the robust control framework is a principled approach to safety that aims to maximize the worst-case perform ance of a system. However, the resulting optimization problem is generally intractable for non-linear systems with continuous states. To overcome this issue, we introduce two tractable methods that are based either on sampling or on a conservative approximation of the robust objective. The proposed approaches are applied to the problem of autonomous driving.
We present a fully closed-loop design for an artificial pancreas (AP) which regulates the delivery of insulin for the control of Type I diabetes. Our AP controller operates in a fully automated fashion, without requiring any manual interaction (e.g. in the form of meal announcements) with the patient. A major obstacle to achieving closed-loop insulin control is the uncertainty in those aspects of a patients daily behavior that significantly affect blood glucose, especially in relation to meals and physical activity. To handle such uncertainties, we develop a data-driven robust model-predictive control framework, where we capture a wide range of individual meal and exercise patterns using uncertainty sets learned from historical data. These sets are then used in the controller and state estimator to achieve automated, precise, and personalized insulin therapy. We provide an extensive in silico evaluation of our robust AP design, demonstrating the potential of this approach, without explicit meal announcements, to support high carbohydrate disturbances and to regulate glucose levels in large clusters of virtual patients learned from population-wide survey data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا