ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracking Control for FES-Cycling based on Force Direction Efficiency with Antagonistic Bi-Articular Muscles

50   0   0.0 ( 0 )
 نشر من قبل Hiroyuki Kawai
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A functional electrical stimulation (FES)-based tracking controller is developed to enable cycling based on a strategy to yield force direction efficiency by exploiting antagonistic bi-articular muscles. Given the input redundancy naturally occurring among multiple muscle groups, the force direction at the pedal is explicitly determined as a means to improve the efficiency of cycling. A model of a stationary cycle and rider is developed as a closed-chain mechanism. A strategy is then developed to switch between muscle groups for improved efficiency based on the force direction of each muscle group. Stability of the developed controller is analyzed through Lyapunov-based methods.



قيم البحث

اقرأ أيضاً

Functional Electrical Stimulation (FES) can restore motion to a paralysed persons muscles. Yet, control stimulating many muscles to restore the practical function of entire limbs is an unsolved problem. Current neurostimulation engineering still reli es on 20th Century control approaches and correspondingly shows only modest results that require daily tinkering to operate at all. Here, we present our state of the art Deep Reinforcement Learning (RL) developed for real time adaptive neurostimulation of paralysed legs for FES cycling. Core to our approach is the integration of a personalised neuromechanical component into our reinforcement learning framework that allows us to train the model efficiently without demanding extended training sessions with the patient and working out of the box. Our neuromechanical component includes merges musculoskeletal models of muscle and or tendon function and a multistate model of muscle fatigue, to render the neurostimulation responsive to a paraplegics cyclist instantaneous muscle capacity. Our RL approach outperforms PID and Fuzzy Logic controllers in accuracy and performance. Crucially, our system learned to stimulate a cyclists legs from ramping up speed at the start to maintaining a high cadence in steady state racing as the muscles fatigue. A part of our RL neurostimulation system has been successfully deployed at the Cybathlon 2020 bionic Olympics in the FES discipline with our paraplegic cyclist winning the Silver medal among 9 competing teams.
The present work analyzes the feasibility of obtaining a single controller (robust), with theoretical guarantees of stability and performance, valid for a total set of network configurations in designed the controller for an uncertain success probabi lity obtain the protocol for Energy-Efficiency in Networked Control System NCS. In particular, this work investigates the performance degradation, in terms of the $mathcal{H}_{infty}$ guaranteed cost, between optimal controller design (precisely known probability) and the sub-optimal controller design (robust to probability uncertainties). The feasibility of the proposed methodology is validated by a numerical example.
Functional electrical stimulation (FES) is used to activate the dysfunctional lower limb muscles of individuals with neuromuscular disorders to produce cycling as a means of exercise and rehabilitation. However, FES-cycling is still metabolically ine fficient and yields low power output at the cycle crank compared to able-bodied cycling. Previous literature suggests that these problems are symptomatic of poor muscle control and non-physiological muscle fiber recruitment. The latter is a known problem with FES in general, and the former motivates investigation of better control methods for FES-cycling.In this paper, a stimulation pattern for quadriceps femoris-only FES-cycling is derived based on the effectiveness of knee joint torque in producing forward pedaling. In addition, a switched sliding-mode controller is designed for the uncertain, nonlinear cycle-rider system with autonomous state-dependent switching. The switched controller yields ultimately bounded tracking of a desired trajectory in the presence of an unknown, time-varying, bounded disturbance, provided a reverse dwell-time condition is satisfied by appropriate choice of the control gains and a sufficient desired cadence. Stability is derived through Lyapunov methods for switched systems, and experimental results demonstrate the performance of the switched control system under typical cycling conditions.
66 - Chuan Yan , Huazhen Fang 2019
Leader-follower tracking control design has received significant attention in recent years due to its important and wide applications. Considering a multi-agent system composed of a leader and multiple followers, this paper proposes and investigates a new perspective into this problem: can we enable a follower to estimate the leaders driving input and leverage this idea to develop new observer-based tracking control approaches? With this motivation, we develop an input-observer-based leader-follower tracking control framework, which features distributed input observers that allow a follower to locally estimate the leaders input toward enhancing tracking control. This work first studies the first-order tracking problem. It then extends to the more sophisticated case of second-order tracking and considers a challenging situation when the leaders and followers velocities are not measured. The proposed approaches exhibit interesting and useful advantages as revealed by a comparison with the literature. Convergence properties of the proposed approaches are rigorously analyzed. Simulation results further illustrate the efficacy of the proposed perspective, framework and approaches.
141 - Chuan Yan , Huazhen Fang 2019
This paper studies robust tracking control for a leader-follower multi-agent system (MAS) subject to disturbances. A challenging problem is considered here, which differs from those in the literature in two aspects. First, we consider the case when a ll the leader and follower agents are affected by disturbances, while the existing studies assume only the followers to suffer disturbances. Second, we assume the disturbances to be bounded only in rates of change rather than magnitude as in the literature. To address this new problem, we propose a novel observer-based distributed tracking control design. As a distinguishing feature, the followers can cooperatively estimate the disturbance affecting the leader to adjust their maneuvers accordingly, which is enabled by the design of the first-of-its-kind distributed disturbance observers. We build specific tracking control approaches for both first- and second-order MASs and prove that they can lead to bounded-error tracking, despite the challenges due to the relaxed assumptions about disturbances. We further perform simulation to validate the proposed approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا