ﻻ يوجد ملخص باللغة العربية
We compute the leading-color contribution to four-particle scattering amplitude in four-dimensional conformal fishnet theory that arises as a special limit of $gamma$-deformed $mathcal N=4$ SYM. We show that the single-trace partial amplitude is protected from quantum corrections whereas the double-trace partial amplitude is a nontrivial infrared finite function of the ratio of Mandelstam invariants. Applying the Lehmann--Symanzik--Zimmerman reduction procedure to the known expression of a four-point correlation function in the fishnet theory, we derive a new representation for this function that is valid for arbitrary coupling. We use this representation to find the asymptotic behavior of the double-trace amplitude in the high-energy limit and to compute the corresponding exact Regge trajectories. We verify that at weak coupling the expressions obtained are in agreement with an explicit five-loop calculation.
We explore and exploit the relation between non-planar correlators in ${cal N}=4$ super-Yang-Mills, and higher-genus closed string amplitudes in type IIB string theory. By conformal field theory techniques we construct the genus-one, four-point strin
In this paper we consider systems of quantum particles in the $4d$ Euclidean space which enjoy conformal symmetry. The algebraic relations for conformal-invariant combinations of positions and momenta are used to construct a solution of the Yang-Baxt
We define form factors and scattering amplitudes in Conformal Field Theory as the coefficient of the singularity of the Fourier transform of time-ordered correlation functions, as $p^2 to 0$. In particular, we study a form factor $F(s,t,u)$ obtained
We investigate properties of four point colour ordered scattering amplitudes in D=6 fishnet CFT. We show that such amplitudes are related via very simple relation to their D=4 counterparts considered previously in the literature. Exploiting this rela
In this thesis, we investigate the low-energy expansion of scattering amplitudes of closed strings at one-loop level (i.e. at genus one) in a ten-dimensional Minkowski background using a special class of functions called modular graph forms. These al