ﻻ يوجد ملخص باللغة العربية
We define form factors and scattering amplitudes in Conformal Field Theory as the coefficient of the singularity of the Fourier transform of time-ordered correlation functions, as $p^2 to 0$. In particular, we study a form factor $F(s,t,u)$ obtained from a four-point function of identical scalar primary operators. We show that $F$ is crossing symmetric, analytic and it has a partial wave expansion. We illustrate our findings in the 3d Ising model, perturbative fixed points and holographic CFTs.
We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point fun
We compute the leading-color contribution to four-particle scattering amplitude in four-dimensional conformal fishnet theory that arises as a special limit of $gamma$-deformed $mathcal N=4$ SYM. We show that the single-trace partial amplitude is prot
Krylov complexity, or K-complexity for short, has recently emerged as a new probe of chaos in quantum systems. It is a measure of operator growth in Krylov space, which conjecturally bounds the operator growth measured by the out of time ordered corr
In the AdS$_3$/CFT$_2$ correspondence, we find some conformal field theory (CFT) states that have no bulk description by the Ba~nados geometry. We elaborate the constraints for a CFT state to be geometric, i.e., having a dual Ba~nados metric, by comp
The onset of quantum chaos in quantum field theory may be studied using out-of-time-order correlators at finite temperature. Recent work argued that a timescale logarithmic in the central charge emerged in the context of two-dimensional conformal fie