ترغب بنشر مسار تعليمي؟ اضغط هنا

Causal Identification under Markov Equivalence

88   0   0.0 ( 0 )
 نشر من قبل Amin Jaber
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Assessing the magnitude of cause-and-effect relations is one of the central challenges found throughout the empirical sciences. The problem of identification of causal effects is concerned with determining whether a causal effect can be computed from a combination of observational data and substantive knowledge about the domain under investigation, which is formally expressed in the form of a causal graph. In many practical settings, however, the knowledge available for the researcher is not strong enough so as to specify a unique causal graph. Another line of investigation attempts to use observational data to learn a qualitative description of the domain called a Markov equivalence class, which is the collection of causal graphs that share the same set of observed features. In this paper, we marry both approaches and study the problem of causal identification from an equivalence class, represented by a partial ancestral graph (PAG). We start by deriving a set of graphical properties of PAGs that are carried over to its induced subgraphs. We then develop an algorithm to compute the effect of an arbitrary set of variables on an arbitrary outcome set. We show that the algorithm is strictly more powerful than the current state of the art found in the literature.



قيم البحث

اقرأ أيضاً

The analysis of causal effects when the outcome of interest is possibly truncated by death has a long history in statistics and causal inference. The survivor average causal effect is commonly identified with more assumptions than those guaranteed by the design of a randomized clinical trial or using sensitivity analysis. This paper demonstrates that individual level causal effects in the `always survivor principal stratum can be identified with no stronger identification assumptions than randomization. We illustrate the practical utility of our methods using data from a clinical trial on patients with prostate cancer. Our methodology is the first and, as of yet, only proposed procedure that enables detecting causal effects in the presence of truncation by death using only the assumptions that are guaranteed by design of the clinical trial. This methodology is applicable to all types of outcomes.
Graphical Markov models determined by acyclic digraphs (ADGs), also called directed acyclic graphs (DAGs), are widely studied in statistics, computer science (as Bayesian networks), operations research (as influence diagrams), and many related fields . Because different ADGs may determine the same Markov equivalence class, it long has been of interest to determine the efficiency gained in model specification and search by working directly with Markov equivalence classes of ADGs rather than with ADGs themselves. A computer program was written to enumerate the equivalence classes of ADG models as specified by Pearl & Vermas equivalence criterion. The program counted equivalence classes for models up to and including 10 vertices. The ratio of number of classes to ADGs appears to approach an asymptote of about 0.267. Classes were analyzed according to number of edges and class size. By edges, the distribution of number of classes approaches a Gaussian shape. By class size, classes of size 1 are most common, with the proportions for larger sizes initially decreasing but then following a more irregular pattern. The maximum number of classes generated by any undirected graph was found to increase approximately factorially. The program also includes a new variation of orderly algorithm for generating undirected graphs.
148 - Yifan Cui , Hongming Pu , Xu Shi 2020
Skepticism about the assumption of no unmeasured confounding, also known as exchangeability, is often warranted in making causal inferences from observational data; because exchangeability hinges on an investigators ability to accurately measure cova riates that capture all potential sources of confounding. In practice, the most one can hope for is that covariate measurements are at best proxies of the true underlying confounding mechanism operating in a given observational study. In this paper, we consider the framework of proximal causal inference introduced by Tchetgen Tchetgen et al. (2020), which while explicitly acknowledging covariate measurements as imperfect proxies of confounding mechanisms, offers an opportunity to learn about causal effects in settings where exchangeability on the basis of measured covariates fails. We make a number of contributions to proximal inference including (i) an alternative set of conditions for nonparametric proximal identification of the average treatment effect; (ii) general semiparametric theory for proximal estimation of the average treatment effect including efficiency bounds for key semiparametric models of interest; (iii) a characterization of proximal doubly robust and locally efficient estimators of the average treatment effect. Moreover, we provide analogous identification and efficiency results for the average treatment effect on the treated. Our approach is illustrated via simulation studies and a data application on evaluating the effectiveness of right heart catheterization in the intensive care unit of critically ill patients.
288 - Kangjie Zhou , Jinzhu Jia 2021
Propensity score methods have been shown to be powerful in obtaining efficient estimators of average treatment effect (ATE) from observational data, especially under the existence of confounding factors. When estimating, deciding which type of covari ates need to be included in the propensity score function is important, since incorporating some unnecessary covariates may amplify both bias and variance of estimators of ATE. In this paper, we show that including additional instrumental variables that satisfy the exclusion restriction for outcome will do harm to the statistical efficiency. Also, we prove that, controlling for covariates that appear as outcome predictors, i.e. predict the outcomes and are irrelevant to the exposures, can help reduce the asymptotic variance of ATE estimation. We also note that, efficiently estimating the ATE by non-parametric or semi-parametric methods require the estimated propensity score function, as described in Hirano et al. (2003)cite{Hirano2003}. Such estimation procedure usually asks for many regularity conditions, Rothe (2016)cite{Rothe2016} also illustrated this point and proposed a known propensity score (KPS) estimator that requires mild regularity conditions and is still fully efficient. In addition, we introduce a linearly modified (LM) estimator that is nearly efficient in most general settings and need not estimation of the propensity score function, hence convenient to calculate. The construction of this estimator borrows idea from the interaction estimator of Lin (2013)cite{Lin2013}, in which regression adjustment with interaction terms are applied to deal with data arising from a completely randomized experiment. As its name suggests, the LM estimator can be viewed as a linear modification on the IPW estimator using known propensity scores. We will also investigate its statistical properties both analytically and numerically.
Minimal Markov bases of configurations of integer vectors correspond to minimal binomial generating sets of the assocciated lattice ideal. We give necessary and sufficient conditions for the elements of a minimal Markov basis to be (a) inside the uni versal Gr{ o}bner basis and (b) inside the Graver basis. We study properties of Markov bases of generalized Lawrence liftings for arbitrary matrices $Ainmathcal{M}_{mtimes n}(Bbb{Z})$ and $Binmathcal{M}_{ptimes n}(Bbb{Z})$ and show that in cases of interest the {em complexity} of any two Markov bases is the same.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا