ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying and Detecting Individual Level `Always Survivor Causal Effects Under `Truncation by Death and Censoring Through Time

142   0   0.0 ( 0 )
 نشر من قبل Jaffer Zaidi
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The analysis of causal effects when the outcome of interest is possibly truncated by death has a long history in statistics and causal inference. The survivor average causal effect is commonly identified with more assumptions than those guaranteed by the design of a randomized clinical trial or using sensitivity analysis. This paper demonstrates that individual level causal effects in the `always survivor principal stratum can be identified with no stronger identification assumptions than randomization. We illustrate the practical utility of our methods using data from a clinical trial on patients with prostate cancer. Our methodology is the first and, as of yet, only proposed procedure that enables detecting causal effects in the presence of truncation by death using only the assumptions that are guaranteed by design of the clinical trial. This methodology is applicable to all types of outcomes.



قيم البحث

اقرأ أيضاً

Causal effect sizes may vary among individuals and they can even be of opposite directions. When there exists serious effect heterogeneity, the population average causal effect (ACE) is not very informative. It is well-known that individual causal ef fects (ICEs) cannot be determined in cross-sectional studies, but we will show that ICEs can be retrieved from longitudinal data under certain conditions. We will present a general framework for individual causality where we will view effect heterogeneity as an individual-specific effect modification that can be parameterized with a latent variable, the receptiveness factor. The distribution of the receptiveness factor can be retrieved, and it will enable us to study the contrast of the potential outcomes of an individual under stationarity assumptions. Within the framework, we will study the joint distribution of the individuals potential outcomes conditioned on all individuals factual data and subsequently the distribution of the cross-world causal effect (CWCE). We discuss conditions such that the latter converges to a degenerated distribution, in which case the ICE can be estimated consistently. To demonstrate the use of this general framework, we present examples in which the outcome process can be parameterized as a (generalized) linear mixed model.
Randomization (a.k.a. permutation) inference is typically interpreted as testing Fishers sharp null hypothesis that all effects are exactly zero. This hypothesis is often criticized as uninteresting and implausible. We show, however, that many random ization tests are also valid for a bounded null hypothesis under which effects are all negative (or positive) for all units but otherwise heterogeneous. The bounded null is closely related to important concepts such as monotonicity and Pareto efficiency. Inverting tests of this hypothesis yields confidence intervals for the maximum (or minimum) individual treatment effect. We then extend randomization tests to infer other quantiles of individual effects, which can be used to infer the proportion of units with effects larger (or smaller) than any threshold. The proposed confidence intervals for all quantiles of individual effects are simultaneously valid, in the sense that no correction due to multiple analyses is needed. In sum, we provide a broader justification for Fisher randomization tests, and develop exact nonparametric inference for quantiles of heterogeneous individual effects. We illustrate our methods with simulations and applications, where we find that Stephenson rank statistics often provide the most informative results.
We study the problem of learning conditional average treatment effects (CATE) from high-dimensional, observational data with unobserved confounders. Unobserved confounders introduce ignorance -- a level of unidentifiability -- about an individuals re sponse to treatment by inducing bias in CATE estimates. We present a new parametric interval estimator suited for high-dimensional data, that estimates a range of possible CATE values when given a predefined bound on the level of hidden confounding. Further, previous interval estimators do not account for ignorance about the CATE associated with samples that may be underrepresented in the original study, or samples that violate the overlap assumption. Our interval estimator also incorporates model uncertainty so that practitioners can be made aware of out-of-distribution data. We prove that our estimator converges to tight bounds on CATE when there may be unobserved confounding, and assess it using semi-synthetic, high-dimensional datasets.
In this paper we study the behavior of the fractions of a factorial design under permutations of the factor levels. We focus on the notion of regular fraction and we introduce methods to check whether a given symmetric orthogonal array can or can not be transformed into a regular fraction by means of suitable permutations of the factor levels. The proposed techniques take advantage of the complex coding of the factor levels and of some tools from polynomial algebra. Several examples are described, mainly involving factors with five levels.
Causal mediation analysis has historically been limited in two important ways: (i) a focus has traditionally been placed on binary treatments and static interventions, and (ii) direct and indirect effect decompositions have been pursued that are only identifiable in the absence of intermediate confounders affected by treatment. We present a theoretical study of an (in)direct effect decomposition of the population intervention effect, defined by stochastic interventions jointly applied to the treatment and mediators. In contrast to existing proposals, our causal effects can be evaluated regardless of whether a treatment is categorical or continuous and remain well-defined even in the presence of intermediate confounders affected by treatment. Our (in)direct effects are identifiable without a restrictive assumption on cross-world counterfactual independencies, allowing for substantive conclusions drawn from them to be validated in randomized controlled trials. Beyond the novel effects introduced, we provide a careful study of nonparametric efficiency theory relevant for the construction of flexible, multiply robust estimators of our (in)direct effects, while avoiding undue restrictions induced by assuming parametric models of nuisance parameter functionals. To complement our nonparametric estimation strategy, we introduce inferential techniques for constructing confidence intervals and hypothesis tests, and discuss open source software implementing the proposed methodology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا