ﻻ يوجد ملخص باللغة العربية
Emission from Sgr A* is highly variable at both X-ray and infrared (IR) wavelengths. Observations over the last ~20 years have revealed X-ray flares that rise above a quiescent thermal background about once per day, while faint X-ray flares from Sgr A* are undetectable below the constant thermal emission. In contrast, the IR emission of Sgr A* is observed to be continuously variable. Recently, simultaneous observations have indicated a rise in IR flux density around the same time as every distinct X-ray flare, while the opposite is not always true (peaks in the IR emission may not be coincident with an X-ray flare). Characterizing the behaviour of these simultaneous X-ray/IR events and measuring any time lag between them can constrain models of Sgr A*s accretion flow and the flare emission mechanism. Using 100+ hours of data from a coordinated campaign between the Spitzer Space Telescope and the Chandra X-ray Observatory, we present results of the longest simultaneous IR and X-ray observations of Sgr A* taken to date. The cross-correlation between the IR and X-ray light curves in this unprecedented dataset, which includes four modest X-ray/IR flares, indicates that flaring in the X-ray may lead the IR by approximately 10-20 minutes with 68% confidence. However, the 99.7% confidence interval on the time-lag also includes zero, i.e., the flaring remains statistically consistent with simultaneity. Long duration and simultaneous multiwavelength observations of additional bright flares will improve our ability to constrain the flare timing characteristics and emission mechanisms, and must be a priority for Galactic Center observing campaigns.
Monitoring of Sagittarius A* from X-ray to radio wavelengths has revealed structured variability --- including X-ray flares --- but it is challenging to establish correlations between them. Most studies have focused on variability in the X-ray and in
Aims. We report on simultaneous observations and modeling of mid-infrared (MIR), near-infrared (NIR), and submillimeter (submm) emission of the source Sgr A* associated with the supermassive black hole at the center of our Galaxy. Our goal was to mon
From a combination of high quality X-ray observations from the NASA Rossi X-ray Timing Explorer (RXTE), and infrared observations from the UK Infrared Telescope (UKIRT) we show that the medium energy X-ray (3-20 keV) and near infrared fluxes in the q
We present the results of an investigation of the X-ray and UV properties of four LINERs observed with Swift, aimed at constructing good S/N and strictly simultaneous UV-X-ray SEDs. In the current paradigm, LINER emission is dominated by geometricall
Variable emission from Sgr~A*, the luminous counterpart to the super-massive black hole at the center of our Galaxy, arises from the innermost portions of the accretion flow. Better characterization of the variability is important for constraining mo