ترغب بنشر مسار تعليمي؟ اضغط هنا

Far Infrared Variability of Sagittarius A*: 25.5 Hours of Monitoring with $Herschel$

65   0   0.0 ( 0 )
 نشر من قبل Jordan Stone
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Variable emission from Sgr~A*, the luminous counterpart to the super-massive black hole at the center of our Galaxy, arises from the innermost portions of the accretion flow. Better characterization of the variability is important for constraining models of the low-luminosity accretion mode powering Sgr~A*, and could further our ability to use variable emission as a probe of the strong gravitational potential in the vicinity of the $4times10^{6}mathrm{M}_{odot}$ black hole. We use the textit{Herschel} Spectral and Photometric Imaging Receiver (SPIRE) to monitor Sgr~A* at wavelengths that are difficult or impossible to observe from the ground. We find highly significant variations at 0.25, 0.35, and 0.5 mm, with temporal structure that is highly correlated across these wavelengths. While the variations correspond to $<$1% changes in the total intensity in the textit{Herschel} beam containing Sgr~A*, comparison to independent, simultaneous observations at 0.85 mm strongly supports the reality of the variations. The lowest point in the light curves, $sim$0.5 Jy below the time-averaged flux density, places a lower bound on the emission of Sgr~A* at 0.25 mm, the first such constraint on the THz portion of the SED. The variability on few hour timescales in the SPIRE light curves is similar to that seen in historical 1.3 mm data, where the longest time series is available, but the distribution of variations in the sub-mm do not show a tail of large-amplitude variations seen at 1.3 mm. Simultaneous X-ray photometry from XMM-Newton shows no significant variation within our observing period, which may explain the lack of very large variations if X-ray and submillimeter flares are correlated.

قيم البحث

اقرأ أيضاً

Monitoring of Sagittarius A* from X-ray to radio wavelengths has revealed structured variability --- including X-ray flares --- but it is challenging to establish correlations between them. Most studies have focused on variability in the X-ray and in frared, where variations are often simultaneous, and because long time series at sub-millimeter and radio wavelengths are limited. Previous work on sub-mm and radio variability hints at a lag between X-ray flares and their candidate sub-millimeter or radio counterparts, with the long wavelength data lagging the X-ray. However, there is only one published time lag between an X-ray flare and a possible radio counterpart. Here we report 9 contemporaneous X-ray and radio observations of Sgr A*. We detect significant radio variability peaking $gtrsim$176 minutes after the brightest X-ray flare ever detected from Sgr A*. We also report other potentially associated X-ray and radio variability, with the radio peaks appearing $lesssim$80 minutes after these weaker X-ray flares. Taken at face value, these results suggest that stronger X-ray flares lead to longer time lags in the radio. However, we also test the possibility that the variability at X-ray and radio wavelengths is not temporally correlated. We cross-correlate data from mismatched X-ray and radio epochs and obtain comparable correlations to the matched data. Hence, we find no overall statistical evidence that X-ray flares and radio variability are correlated, underscoring a need for more simultaneous, long duration X-ray--radio monitoring of Sgr A*.
122 - H. Boyce , D. Haggard , G. Witzel 2018
Emission from Sgr A* is highly variable at both X-ray and infrared (IR) wavelengths. Observations over the last ~20 years have revealed X-ray flares that rise above a quiescent thermal background about once per day, while faint X-ray flares from Sgr A* are undetectable below the constant thermal emission. In contrast, the IR emission of Sgr A* is observed to be continuously variable. Recently, simultaneous observations have indicated a rise in IR flux density around the same time as every distinct X-ray flare, while the opposite is not always true (peaks in the IR emission may not be coincident with an X-ray flare). Characterizing the behaviour of these simultaneous X-ray/IR events and measuring any time lag between them can constrain models of Sgr A*s accretion flow and the flare emission mechanism. Using 100+ hours of data from a coordinated campaign between the Spitzer Space Telescope and the Chandra X-ray Observatory, we present results of the longest simultaneous IR and X-ray observations of Sgr A* taken to date. The cross-correlation between the IR and X-ray light curves in this unprecedented dataset, which includes four modest X-ray/IR flares, indicates that flaring in the X-ray may lead the IR by approximately 10-20 minutes with 68% confidence. However, the 99.7% confidence interval on the time-lag also includes zero, i.e., the flaring remains statistically consistent with simultaneity. Long duration and simultaneous multiwavelength observations of additional bright flares will improve our ability to constrain the flare timing characteristics and emission mechanisms, and must be a priority for Galactic Center observing campaigns.
A far-infrared counterpart to the west hot spot of the radio galaxy Pictor A is discovered with the Spectral and Photometric Imaging REceiver (SPIRE) onboard Herschel. The color-corrected flux density of the source is measured as $70.0 pm 9.9$ mJy at the wavelength of 350 $mu$m. A close investigation into its radio-to-optical spectrum indicates that the mid-infrared excess over the radio synchrotron component, detected with WISE and Spitzer, significantly contributes to the far-infrared band. Thanks to the SPIRE data, it is revealed that the spectrum of the excess is described by a broken power-law model subjected to a high-energy cutoff. By applying the radiative cooling break under continuous energy injection ($Delta alpha = 0.5$), the broken power-law model supports an idea that the excess originates in 10-pc scale substructures within the hot spot. From the break frequency, $ u_{rm b} = 1.6_{-1.0}^{+3.0} times 10^{12}$ Hz, the magnetic field was estimated as $Bsimeq1$-$4$ mG. This is higher than the minimum-energy magnetic field of the substructures by a factor of $3$--$10$. Even if the origin of the excess is larger than $sim 100$ pc, the magnetic field stronger than the minimum-energy field is confirmed. It is proposed that regions with a magnetic field locally boosted via plasma turbulence are observed as the substructures. The derived energy index below the break, $alpha sim 0.22$ (conservatively $<0.42$), is difficult to be attributed to the strong-shock acceleration ($alpha = 0.5$). Stochastic acceleration and magnetic reconnection are considered as a plausible alternative mechanism.
Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotr on emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intra-hour variability associated with these fields.
OH is a key species in the water chemistry of star-forming regions, because its presence is tightly related to the formation and destruction of water. This paper presents OH observations from 23 low- and intermediate-mass young stellar objects obtain ed with the PACS integral field spectrometer on-board Herschel in the context of the Water In Star-forming Regions with Herschel (WISH) key program. Most low-mass sources have compact OH emission (< 5000 AU scale), whereas the OH lines in most intermediate-mass sources are extended over the whole PACS detector field-of-view (> 20000 AU). The strength of the OH emission is correlated with various source properties such as the bolometric luminosity and the envelope mass, but also with the OI and H2O emission. Rotational diagrams for sources with many OH lines show that the level populations of OH can be approximated by a Boltzmann distribution with an excitation temperature at around 70 K. Radiative transfer models of spherically symmetric envelopes cannot reproduce the OH emission fluxes nor their broad line widths, strongly suggesting an outflow origin. Slab excitation models indicate that the observed excitation temperature can either be reached if the OH molecules are exposed to a strong far-infrared continuum radiation field or if the gas temperature and density are sufficiently high. Using realistic source parameters and radiation fields, it is shown for the case of Ser SMM1 that radiative pumping plays an important role in transitions arising from upper level energies higher than 300 K. The compact emission in the low-mass sources and the required presence of a strong radiation field and/or a high density to excite the OH molecules points towards an origin in shocks in the inner envelope close to the protostar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا