ترغب بنشر مسار تعليمي؟ اضغط هنا

Variability of low-luminosity AGNs: a simultaneous X-ray/UV look with Swift

191   0   0.0 ( 0 )
 نشر من قبل Patrizia Romano
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of an investigation of the X-ray and UV properties of four LINERs observed with Swift, aimed at constructing good S/N and strictly simultaneous UV-X-ray SEDs. In the current paradigm, LINER emission is dominated by geometrically thick, radiatively inefficient radiation flows (RIAFs) as opposed to radiatively efficient, geometrically thin accretion disks thought to power higher luminosity AGNs (Seyferts and QSOs). However, some recent studies have found more similarities than differences between the SEDs of LINERs and those of more luminous AGNs, suggesting that LINERs are powered by the same mechanisms active in higher luminosity AGNs. Our new observations allow us to test this idea. In particular, XRT affords long and sensitive monitoring of the X-ray emission. We detect significant variability in M81 and, for the first time, in NGC 3998. The maximum amplitude variations over time scales of some hours are 30% in both M81 and NGC 3998. NGC 3998 exhibits a variation of the same amplitude on a time scale of 9 days. M81 varies significantly over 2 years, with a maximum change of a factor 2 in 6 months. The X-ray variability detected in 2 of our sources, and in particular in NGC 3998, puts into question the interpretation of their powering mechanism as an inefficient accretion flow, because one of the characteristics of this model is the lack of variability. The identification of NGC 3998 with a low power AGN appears more viable.



قيم البحث

اقرأ أيضاً

468 - Elena Pian 2009
We have observed four low-luminosity active galactic nuclei classified as Type 1 LINERs with the X-ray Telescope (XRT) and the UltraViolet-Optical Telescope (UVOT) onboard Swift, in an attempt to clarify the main powering mechanism of this class of n earby sources. Among our targets, we detect X-ray variability in NGC 3998 for the first time. The light curves of this object reveal variations of up to 30% amplitude in half a day, with no significant spectral variability on this time scale. We also observe a decrease of ~30% over 9 days, with significant spectral softening. Moreover, the X-ray flux is ~40% lower than observed in previous years. Variability is detected in M 81 as well, at levels comparable to those reported previously: a flux increase in the hard X-rays (1-10 keV) of 30% in ~3 hours and variations by up to a factor of 2 within a few years. This X-ray behaviour is similar to that of higher-luminosity, Seyfert-type, objects. Using previous high-angular-resolution imaging data from the Hubble Space Telescope (HST), we evaluate the diffuse UV emission due to the host galaxy and isolate the nuclear flux in our UVOT observations. All sources are detected in the UV band, at levels similar to those of the previous observations with HST. The XRT (0.2-10 keV) spectra are well described by single power-laws and the UV-to-X-ray flux ratios are again consistent with those of Seyferts and radio-loud AGNs of higher luminosity. The similarity in X-ray variability and broad-band energy distributions suggests the presence of similar accretion and radiation processes in low- and high-luminosity AGNs.
We have compiled a catalog of optically-selected quasars with simultaneous observations in UV/optical and X-ray bands by the Swift Gamma Ray Burst Explorer. Objects in this catalog are identified by matching the Swift pointings with the Sloan Digital Sky Survey Data Release 5 quasar catalog. The final catalog contains 843 objects, among which 637 have both UVOT and XRT observations and 354 of which are detected by both instruments. The overall X-ray detection rate is ~60% which rises to ~85% among sources with at least 10 ks of XRT exposure time. We construct the time-averaged spectral energy distribution for each of the 354 quasars using UVOT photometric measurements and XRT spectra. From model fits to these SEDs, we find that the big blue bump contributes about 0.3 dex to the quasar luminosity. We re-visit the alpha_ox-L_uv relation by selecting a clean sample with only type 1 radio-quiet quasars; the dispersion of this relation is reduced by at least 15% compared to studies that use non-simultaneous UV/optical and X-ray data. We only found a weak correlation between L/L_Edd and alpha_uv. We do not find significant correlations between alpha_x and alpha_ox, alpha_ox and alpha_uv, and alpha_x and Log L(0.3-10 keV). The correlations between alpha_uv and alpha_x, alpha_ox and alpha_x, alpha_ox and alpha_uv, L/L_Edd and alpha_x, and L/L_Edd and alpha_ox are stronger amongst low-redshift quasars, indicating that these correlations are likely driven by the changes of SED shape with accretion state.
We report the results of intensive X-ray, UV and optical monitoring of the Seyfert 1 galaxy NGC 4593 with Swift. There is no intrinsic flux-related spectral change in the the variable components in any band with small apparent variations due only to contamination by a second constant component, possibly a (hard) reflection component in the X-rays and the (red) host galaxy in the UV/optical bands. Relative to the shortest wavelength band, UVW2, the lags of the other UV and optical bands are mostly in agreement with the predictions of reprocessing of high energy emission from an accretion disc. The U-band lag is, however, far larger than expected, almost certainly because of reprocessed Balmer continuum emission from the more distant broad line region gas. The UVW2 band is well correlated with the X-rays but lags by ~6x more than expected if the UVW2 results from reprocessing of X-rays on the accretion disc. However, if the lightcurves are filtered to remove variations on timescales >5d, the lag approaches the expectation from disc reprocessing. MEMEcho analysis shows that direct X-rays can be the driver of most of the variations in the UV/optical bands as long as the response functions for those bands all have long tails (up to 10d) in addition to a strong peak (from disc reprocessing) at short lag (<1d). We interpret the tails as due to reprocessing from the surrounding gas. Comparison of X-ray to UVW2 and UVW2 to V-band lags for 4 AGN, including NGC 4593, shows that all have UVW2 to V-band lags which exceed the expectations from disc resprocessing by factor < 2. However the X-ray to UVW2 lags are, mostly, in greater excess from the expectations from disc reprocessing and differ between AGN. The largest excess is in NGC 4151. Absorption and scattering may be affecting X-ray to UV lags.
Lags measured from correlated X-ray/UV/optical monitoring of AGN allow us to determine whether UV/optical variability is driven by reprocessing of X-rays or X-ray variability is driven by UV/optical seed photon variations. We present the results of t he largest study to date of the relationship between the X-ray, UV and optical variability in an AGN with 554 observations, over a 750d period, of the Seyfert 1 galaxy NGC 5548 with Swift. There is a good overall correlation between the X-ray and UV/optical bands, particularly on short timescales (tens of days). These bands lag the X-ray band with lags which are proportional to wavelength to the power 1.23+/-0.31. This power is very close to the power (4/3) expected if short timescale UV/optical variability is driven by reprocessing of X-rays by a surrounding accretion disc. The observed lags, however, are longer than expected from a standard Shakura-Sunyaev accretion disc with X-ray heating, given the currently accepted black hole mass and accretion rate values, but can be explained with a slightly larger mass and accretion rate, and a generally hotter disc. Some long term UV/optical variations are not paralleled exactly in the X-rays, suggesting an additional component to the UV/optical variability arising perhaps from accretion rate perturbations propagating inwards through the disc.
We present an analysis of simultaneous X-Ray and UV observations ofcomet C/2007 N3 (Lulin) taken on three days between January 2009 and March 2009 using the Swift observatory. For our X-ray observations, we used basic transforms to account for the mo vement of the comet to allow the combination of all available data to produce an exposure-corrected image. We fit a simple model to the extracted spectrum and measured an X-ray flux of 4.3+/-1.3 * 10^-13 ergs cm-2 s-1 in the 0.3 to 1.0 keV band. In the UV, we acquired large-aperture photometry and used a coma model to derive water production rates given assumptions regarding the distribution of water and its dissociation into OH molecules about the comets nucleus. We compare and discuss the X-ray and UV morphology of the comet. We show that the peak of the cometary X-ray emission is offset sunward of the UV peak emission, assumed to be the nucleus, by approximately 35,000 km. The offset observed, the shape of X-ray emission and the decrease of the X-ray emission comet-side of the peak, suggested that the comet was indeed collisionally thick to charge exchange, as expected from our measurements of the comets water production rate (6--8 10^28 mol. s-1). The X-ray spectrum is consistent with solar wind charge exchange emission, and the comet most likely interacted with a solar wind depleted of very highly ionised oxygen. We show that the measured X-ray lightcurve can be very well explained by variations in the comets gas production rates, the observing geometry and variations in the solar wind flux.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا