ﻻ يوجد ملخص باللغة العربية
Recent observations of giant ellipticals and brightest cluster galaxies (BCGs) provide tentative evidence for a correlation between the luminosity of the H$alpha$ emitting gas filaments and the strength of feedback associated with the active galactic nucleus (AGN). Motivated by this, we use 3D radiation-hydrodynamic simulations with the code Enzo to examine and quantify the relationship between the observable properties of the H$alpha$ filaments and the kinetic and radiative feedback from supermassive black holes in BCGs. We find that the spatial extent and total mass of the filaments show positive correlations with AGN feedback power and can therefore be used as probes of the AGN activity. We also examine the relationship between the AGN feedback power and velocity dispersion of the H$alpha$ filaments and find that the kinetic luminosity shows statistically significant correlation with the component of the velocity dispersion along the jet axis but not the components perpendicular to it.
The central regions of cool-core galaxy clusters harbour multiphase gas with temperatures ranging from $10 mathrm{K}$--$10^7 mathrm{K}$. Feedback from AGN jets prevents the gas from undergoing a catastrophic cooling flow. However, the exact mechanism
The orientations of the red galaxies in a filament are aligned with the orientation of the filament. We thus develop a location-alignment-method (LAM) of detecting filaments around clusters of galaxies, which uses both the alignments of red galaxies
We investigate the kinematic properties of a large (N=998) sample of COSMOS spectroscopic galaxy members distributed among 79 groups. We identify the Brightest Group Galaxies (BGGs) and cross-match our data with the VLA-COSMOS Deep survey at 1.4 GHz,
Recent observations provide evidence that some cool-core clusters (CCCs) host quasars in their brightest cluster galaxies (BCGs). Motivated by these findings we use 3D radiation-hydrodynamic simulations with the code Enzo to explore the joint role of
The Lyman-$alpha$ forest is a powerful probe for cosmology, but it is also strongly impacted by galaxy evolution and baryonic processes such as Active Galactic Nuclei (AGN) feedback, which can redistribute mass and energy on large scales. We constrai