ترغب بنشر مسار تعليمي؟ اضغط هنا

Velocity structure functions in multiphase turbulence: interpreting kinematics of H$alpha$ filaments in cool core clusters

186   0   0.0 ( 0 )
 نشر من قبل Rajsekhar Mohapatra
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The central regions of cool-core galaxy clusters harbour multiphase gas with temperatures ranging from $10 mathrm{K}$--$10^7 mathrm{K}$. Feedback from AGN jets prevents the gas from undergoing a catastrophic cooling flow. However, the exact mechanism of this feedback energy input is unknown, mainly due to the lack of velocity measurements of the hot phase gas, which has large thermal velocities. However, recent observations have measured the velocity structure functions ($mathrm{VSF}$s) of the cooler phases (at $10 mathrm{K}$ and $10^4 mathrm{K}$) and used them to indirectly estimate the motions of the hot phase. In the first part of this study, we conduct high-resolution ($384^3$--$1536^3$ resolution elements) simulations of homogeneous isotropic subsonic turbulence, without radiative cooling. We analyse the second-order velocity structure functions ($mathrm{VSF}_2$) in these simulations and study the effects of varying spatial resolution, the introduction of magnetic fields and the effect of line of sight (LOS) projection on the $mathrm{VSF}_2$. In the second part of the study, we analyse high-resolution ($768^3$ resolution elements) idealised simulations of multiphase turbulence in the intracluster medium (ICM) from Mohapatra et al 2021. We compare $mathrm{VSF}_2$ for both the hot ($Tsim10^7 mathrm{K}$) and cold ($Tsim10^4 mathrm{K}$) phases. We also look for the effect of LOS projection. For turbulence without radiative cooling, we observe a steepening in the slopes of the $mathrm{VSF}_2$ upon projection. In our runs with radiative cooling and multiphase gas, we find that the $mathrm{VSF}_2$ of the hot and cold phases have similar scaling, but introducing magnetic fields steepens the $mathrm{VSF}_2$ of the cold phase only. We also find that projection along the LOS steepens the $mathrm{VSF}_2$ for the hot phase and mostly flattens it for the cold phase.

قيم البحث

اقرأ أيضاً

122 - Yu Qiu 2018
Recent observations of giant ellipticals and brightest cluster galaxies (BCGs) provide tentative evidence for a correlation between the luminosity of the H$alpha$ emitting gas filaments and the strength of feedback associated with the active galactic nucleus (AGN). Motivated by this, we use 3D radiation-hydrodynamic simulations with the code Enzo to examine and quantify the relationship between the observable properties of the H$alpha$ filaments and the kinetic and radiative feedback from supermassive black holes in BCGs. We find that the spatial extent and total mass of the filaments show positive correlations with AGN feedback power and can therefore be used as probes of the AGN activity. We also examine the relationship between the AGN feedback power and velocity dispersion of the H$alpha$ filaments and find that the kinetic luminosity shows statistically significant correlation with the component of the velocity dispersion along the jet axis but not the components perpendicular to it.
Multi-phase filamentary structures around Brightest Cluster Galaxies are likely a key step of AGN-feedback. We observed molecular gas in 3 cool cluster cores: Centaurus, Abell S1101, and RXJ1539.5 and gathered ALMA and MUSE data for 12 other clusters . Those observations show clumpy, massive and long, 3--25 kpc, molecular filaments, preferentially located around the radio bubbles inflated by the AGN (Active Galactic Nucleus). Two objects show nuclear molecular disks. The optical nebula is certainly tracing the warm envelopes of cold molecular filaments. Surprisingly, the radial profile of the H$alpha$/CO flux ratio is roughly constant for most of the objects, suggesting that (i) between 1.2 to 7 times more cold gas could be present and (ii) local processes must be responsible for the excitation. Projected velocities are between 100--400 km s$^{-1}$, with disturbed kinematics and sometimes coherent gradients. This is likely due to the mixing in projection of several thin unresolved filaments. The velocity fields may be stirred by turbulence induced by bubbles, jets or merger-induced sloshing. Velocity and dispersions are low, below the escape velocity. Cold clouds should eventually fall back and fuel the AGN. We compare the filaments radial extent, r$_{fil}$, with the region where the X-ray gas can become thermally unstable. The filaments are always inside the low-entropy and short cooling time region, where t$_{cool}$/t$_{ff}$<20 (9 of 13 sources). The range t$_{cool}$/t$_{ff}$, 8-23 at r$_{fil}$, is likely due to (i) a more complex gravitational potential affecting the free-fall time (e.g., sloshing, mergers); (ii) the presence of inhomogeneities or uplifted gas in the ICM, affecting the cooling time. For some of the sources, r$_{fil}$ lies where the ratio of the cooling time to the eddy-turnover time, t$_{cool}$/t$_{eddy}$, is approximately unity.
Do cool-core (CC) and noncool-core (NCC) clusters live in different environments? We make novel use of H$alpha$ emission lines in the central galaxies of redMaPPer clusters as proxies to construct large (1,000s) samples of CC and NCC clusters, and me asure their relative assembly bias using both clustering and weak lensing. We increase the statistical significance of the bias measurements from clustering by cross-correlating the clusters with an external galaxy redshift catalog from the Sloan Digital Sky Survey III, the LOWZ sample. Our cross-correlations can constrain assembly bias up to a statistical uncertainty of 6%. Given our H$alpha$ criteria for CC and NCC, we find no significant differences in their clustering amplitude. Interpreting this difference as the absence of halo assembly bias, our results rule out the possibility of having different large-scale (tens of Mpc) environments as the source of diversity observed in cluster cores. Combined with recent observations of the overall mild evolution of CC and NCC properties, such as central density and CC fraction, this would suggest that either the cooling properties of the cluster core are determined early on solely by the local (<200 kpc) gas properties at formation or that local merging leads to stochastic CC relaxation and disruption in a periodic way, preserving the average population properties over time. Studying the small-scale clustering in clusters at high redshift would help shed light on the exact scenario.
The connection between the pre-stellar core mass function (CMF) and the stellar initial mass function (IMF) lies at the heart of all star formation theories. In this paper, we study the earliest phases of star formation with a series of high-resoluti on numerical simulations that include the formation of sinks. In particular, we focus on the transition from cores to sinks within a massive molecular filament. We compare the CMF and IMF between magnetized and unmagnetized simulations, and between different resolutions. We find that selecting cores based on their kinematic virial parameter excludes collapsing objects because they host large velocity dispersions. Selecting only the thermally unstable magnetized cores, we observe that their mass-to-flux ratio spans almost two orders of magnitude for a given mass. We also see that, when magnetic fields are included, the CMF peaks at higher core mass values with respect to pure hydrodynamical simulations. Nonetheless, all models produce sink mass functions with a high-mass slope consistent with Salpeter. Finally, we examine the effects of resolution and find that, in isothermal simulations, even models with very high dynamical range fail to converge in the mass function. Our main conclusion is that, although the resulting CMFs and IMFs have similar slopes in all simulations, the cores have slightly different sizes and kinematical properties when a magnetic field is included. However, a core selection based on the mass-to-flux ratio alone is not enough to alter the shape of the CMF, if we do not take thermal stability into account. Finally, we conclude that extreme care should be given to resolution issues when studying sink formation with an isothermal equation of state.
In this work we present scanning Fabry-Perot H$alpha$ observations of the isolated interacting galaxy pair NGC 5278/79 obtained with the PUMA Fabry-Perot interferometer. We derived velocity fields, various kinematic parameters and rotation curves for both galaxies. Our kinematical results together with the fact that dust lanes have been detected in both galaxies, as well as the analysis of surface brightness profiles along the minor axis, allowed us to determine that both components of the interacting pair are trailing spirals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا