ﻻ يوجد ملخص باللغة العربية
Recent observations provide evidence that some cool-core clusters (CCCs) host quasars in their brightest cluster galaxies (BCGs). Motivated by these findings we use 3D radiation-hydrodynamic simulations with the code Enzo to explore the joint role of the kinetic and radiative feedback from supermassive black holes (SMBHs) in BCGs. We implement kinetic feedback as sub-relativistic plasma outflows and model radiative feedback using the ray-tracing radiative transfer or thermal energy injection. In our simulations the central SMBH transitions between the radiatively efficient and radiatively inefficient states on timescales of a few Gyr, as a function of its accretion rate. The timescale for this transition depends primarily on the fraction of power allocated to each feedback mode, and to a lesser degree on the overall feedback luminosity of the active galactic nucleus (AGN). Specifically, we find that (a) kinetic feedback must be present at both low and high accretion rates in order to prevent the cooling catastrophe, and (b) its contribution likely accounts for > 10% of the total AGN feedback power, since below this threshold simulated BCGs tend to host radio-loud quasars most of the time, in apparent contrast with observations. We also find a positive correlation between the AGN feedback power and the mass of the cold gas filaments in the cluster core, indicating that observations of H$alpha$ filaments can be used as a measure of AGN feedback.
Here we introduce GAMESH, a novel pipeline which implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code C
Radiative feedback (RFB) from stars plays a key role in galaxies, but remains poorly-understood. We explore this using high-resolution, multi-frequency radiation-hydrodynamics (RHD) simulations from the Feedback In Realistic Environments (FIRE) proje
Recent observations have found that many $zsim 6$ quasar fields lack galaxies. This unexpected lack of galaxies may potentially be explained by quasar radiation feedback. In this paper I present a suite of 3D radiative transfer cosmological simulatio
We present results from multifrequency radiative hydrodynamical chemistry simulations addressing primordial star formation and related stellar feedback from various populations of stars, stellar energy distributions (SEDs) and initial mass functions.
Recent observations of giant ellipticals and brightest cluster galaxies (BCGs) provide tentative evidence for a correlation between the luminosity of the H$alpha$ emitting gas filaments and the strength of feedback associated with the active galactic