ترغب بنشر مسار تعليمي؟ اضغط هنا

Gas density perturbations induced by forming planet(s) in the AS 209 protoplanetary disk as seen with ALMA

69   0   0.0 ( 0 )
 نشر من قبل Cecile Favre
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The formation of planets occurs within protoplanetary disks surrounding young stars, resulting in perturbation of the gas and dust surface densities. Here, we report the first evidence of spatially resolved gas surface density ($Sigma_{g}$) perturbation towards the AS~209 protoplanetary disk from the optically thin C$^{18}$O ($J=2-1$) emission. The observations were carried out at 1.3~mm with ALMA at a spatial resolution of about 0.3$arcsec$ $times$ 0.2$arcsec$ (corresponding to $sim$ 38 $times$ 25 au). The C$^{18}$O emission shows a compact ($le$60~au), centrally peaked emission and an outer ring peaking at 140~au, consistent with that observed in the continuum emission and, its azimuthally averaged radial intensity profile presents a deficit that is spatially coincident with the previously reported dust map. This deficit can only be reproduced with our physico-thermochemical disk model by lowering $Sigma_{gas}$ by nearly an order of magnitude in the dust gaps. Another salient result is that contrary to C$^{18}$O, the DCO$^{+}$ ($J=3-2$) emission peaks between the two dust gaps. We infer that the best scenario to explain our observations (C$^{18}$O deficit and DCO$^{+}$ enhancement) is a gas perturbation due to forming-planet(s), that is commensurate with previous continuum observations of the source along with hydrodynamical simulations. Our findings confirm that the previously observed dust gaps are very likely due to perturbation of the gas surface density that is induced by a planet of at least 0.2~M$rm_{Jupiter}$ in formation. Finally, our observations also show the potential of using CO isotopologues to probe the presence of saturn mass planet(s).



قيم البحث

اقرأ أيضاً

We present Atacama Large Millimeter Array CO(3$-$2) and HCO$^+$(4$-$3) observations covering the central $1rlap{.}5$$times$$1rlap{.}5$ region of the Orion Nebula Cluster (ONC). The unprecedented level of sensitivity ($sim$0.1 mJy beam$^{-1}$) and ang ular resolution ($sim$$0rlap{.}09 approx 35$ AU) of these line observations enable us to search for gas-disk detections towards the known positions of submillimeter-detected dust disks in this region. We detect 23 disks in gas: 17 in CO(3$-$2), 17 in HCO$^+$(4$-$3), and 11 in both lines. Depending on where the sources are located in the ONC, we see the line detections in emission, in absorption against the warm background, or in both emission and absorption. We spectrally resolve the gas with $0.5$ km s$^{-1}$ channels, and find that the kinematics of most sources are consistent with Keplerian rotation. We measure the distribution of gas-disk sizes and find typical radii of $sim$50-200 AU. As such, gas disks in the ONC are compact in comparison with the gas disks seen in low-density star-forming regions. Gas sizes are universally larger than the dust sizes. However, the gas and dust sizes are not strongly correlated. We find a positive correlation between gas size and distance from the massive star $theta^1$ Ori C, indicating that disks in the ONC are influenced by photoionization. Finally, we use the observed kinematics of the detected gas lines to model Keplerian rotation and infer the masses of the central pre-main-sequence stars. Our dynamically-derived stellar masses are not consistent with the spectroscopically-derived masses, and we discuss possible reasons for this discrepancy.
72 - D. Fedele 2017
The paper presents new high angular resolution ALMA 1.3 mm dust continuum observations of the protoplanetary system AS 209 in the Ophiuchus star forming region. The dust continuum emission is characterized by a main central core and two prominent rin gs at $r = 75,$au and $r = 130,$au intervaled by two gaps at at $r = 62,$au and $r = 103,$au. The two gaps have different widths and depths, with the inner one being narrower and shallower. We determined the surface density of the millimeter dust grains using the 3D radiative transfer disk code textsc{dali}. According to our fiducial model the inner gap is partially filled with millimeter grains while the outer gap is largely devoid of dust. The inferred surface density is compared to 3D hydrodynamical simulations (FARGO-3D) of planet-disk interaction. The outer dust gap is consistent with the presence of a giant planet ($M_{rm planet} sim 0.8,M_{rm Staturn}$); the planet is responsible for the gap opening and for the pile-up of dust at the outer edge of the planet orbit. The simulations also show that the same planet can give origin to the inner gap at $r = 62,$au. The relative position of the two dust gaps is close to the 2:1 resonance and we have investigated the possibility of a second planet inside the inner gap. The resulting surface density (including location, width and depth of the two dust gaps) are in agreement with the observations. The properties of the inner gap pose a strong constraint to the mass of the inner planet ($M_{rm planet} < 0.1,M_{rm J}$). In both scenarios (single or pair of planets), the hydrodynamical simulations suggest a very low disk viscosity ($alpha < 10^{-4}$). Given the young age of the system (0.5 - 1 Myr), this result implies that the formation of giant planets occurs on a timescale of $lesssim$ 1,Myr.
Emission substructures in gas and dust are common in protoplanetary disks. Such substructures can be linked to planet formation or planets themselves. We explore the observed gas substructures in AS 209 using thermochemical modeling with RAC2D and hi gh-spatial resolution data from the Molecules with ALMA at Planet-forming Scales(MAPS) program. The observations of C$^{18}$O J=2-1 emission exhibit a strong depression at 88 au overlapping with the positions of multiple gaps in millimeter dust continuum emission. We find that the observed CO column density is consistent with either gas surface-density perturbations or chemical processing, while C$_2$H column density traces changes in the C/O ratio rather than the H$_2$ gas surface density. However, the presence of a massive planet (> 0.2 M$_{Jup}$) would be required to account for this level of gas depression, which conflicts with constraints set by the dust emission and the pressure profile measured by gas kinematics. Based on our models, we infer that a local decrease of CO abundance is required to explain the observed structure in CO, dominating over a possible gap-carving planet present and its effect on the H$_2$ surface density. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement Series.
We present a high angular resolution ($sim 0.2^{primeprime}$), high sensitivity ($sigma sim 0.2$ mJy) survey of the 870 $mu$m continuum emission from the circumstellar material around 49 pre-main sequence stars in the $rho$ Ophiuchus molecular cloud. Because most millimeter instruments have resided in the northern hemisphere, this represents the largest high-resolution, millimeter-wave survey of the circumstellar disk content of this cloud. Our survey of 49 systems comprises 63 stars; we detect disks associated with 29 single sources, 11 binaries, 3 triple systems and 4 transition disks. We present flux and radius distributions for these systems; in particular, this is the first presentation of a reasonably complete probability distribution of disk radii at millimeter-wavelengths. We also compare the flux distribution of these protoplanetary disks with that of the disk population of the Taurus-Auriga molecular cloud. We find that disks in binaries are both significantly smaller and have much less flux than their counterparts around isolated stars. We compute truncation calculations on our binary sources and find that these disks are too small to have been affected by tidal truncation and posit some explanations for this. Lastly, our survey found 3 candidate gapped disks, one of which is a newly identified transition disk with no signature of a dip in infrared excess in extant observations.
The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We exten d the modeling approach presented in Williams & Best (2014) to show that gas surface density profiles can be measured from high fidelity 13CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, Mgas = 0.048 solar masse, and accretion disk characteristic size Rc = 213au and gradient gamma = 0.39. The same parameters match the C18O 2--1 image and indicates an abundance ratio [13CO]/[C18O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large 13CO 2--1 image library and fit simulated data. For disks with gas masses 3-10 Jupiter masses at 150pc, ALMA observations with a resolution of 0.2-0.3 arcseconds and integration times of about 20 minutes allow reliable estimates of Rc to within about 10au and gamma to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا