ﻻ يوجد ملخص باللغة العربية
Emission substructures in gas and dust are common in protoplanetary disks. Such substructures can be linked to planet formation or planets themselves. We explore the observed gas substructures in AS 209 using thermochemical modeling with RAC2D and high-spatial resolution data from the Molecules with ALMA at Planet-forming Scales(MAPS) program. The observations of C$^{18}$O J=2-1 emission exhibit a strong depression at 88 au overlapping with the positions of multiple gaps in millimeter dust continuum emission. We find that the observed CO column density is consistent with either gas surface-density perturbations or chemical processing, while C$_2$H column density traces changes in the C/O ratio rather than the H$_2$ gas surface density. However, the presence of a massive planet (> 0.2 M$_{Jup}$) would be required to account for this level of gas depression, which conflicts with constraints set by the dust emission and the pressure profile measured by gas kinematics. Based on our models, we infer that a local decrease of CO abundance is required to explain the observed structure in CO, dominating over a possible gap-carving planet present and its effect on the H$_2$ surface density. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement Series.
Here we present high resolution (15-24 au) observations of CO isotopologue lines from the Molecules with ALMA on Planet-forming Scales (MAPS) ALMA Large Program. Our analysis employs $^{13}$CO and C$^{18}$O ($J$=2-1), (1-0), and C$^{17}$O (1-0) line
The Molecules with ALMA at Planet-forming Scales (MAPS) Large Program provides a detailed, high resolution (${sim}$10-20 au) view of molecular line emission in five protoplanetary disks at spatial scales relevant for planet formation. Here, we presen
Planets form and obtain their compositions in dust and gas-rich disks around young stars, and the outcome of this process is intimately linked to the disk chemical properties. The distributions of molecules across disks regulate the elemental composi
Constraining the distribution of gas and dust in the inner 20 au of protoplanetary disks is difficult. At the same time, this region is thought to be responsible for most planet formation, especially around the water ice line at 3-10 au. Under the as
Constraining dust properties of planet-forming disks via high angular resolution observations is fundamental to understanding how solids are trapped in substructures and how dust growth may be favored or accelerated therein. We use ALMA dust continuu