ترغب بنشر مسار تعليمي؟ اضغط هنا

Protoplanetary Disks in $rho$ Ophiuchus as Seen From ALMA

73   0   0.0 ( 0 )
 نشر من قبل Erin Cox
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a high angular resolution ($sim 0.2^{primeprime}$), high sensitivity ($sigma sim 0.2$ mJy) survey of the 870 $mu$m continuum emission from the circumstellar material around 49 pre-main sequence stars in the $rho$ Ophiuchus molecular cloud. Because most millimeter instruments have resided in the northern hemisphere, this represents the largest high-resolution, millimeter-wave survey of the circumstellar disk content of this cloud. Our survey of 49 systems comprises 63 stars; we detect disks associated with 29 single sources, 11 binaries, 3 triple systems and 4 transition disks. We present flux and radius distributions for these systems; in particular, this is the first presentation of a reasonably complete probability distribution of disk radii at millimeter-wavelengths. We also compare the flux distribution of these protoplanetary disks with that of the disk population of the Taurus-Auriga molecular cloud. We find that disks in binaries are both significantly smaller and have much less flux than their counterparts around isolated stars. We compute truncation calculations on our binary sources and find that these disks are too small to have been affected by tidal truncation and posit some explanations for this. Lastly, our survey found 3 candidate gapped disks, one of which is a newly identified transition disk with no signature of a dip in infrared excess in extant observations.

قيم البحث

اقرأ أيضاً

We present Atacama Large Millimeter Array CO(3$-$2) and HCO$^+$(4$-$3) observations covering the central $1rlap{.}5$$times$$1rlap{.}5$ region of the Orion Nebula Cluster (ONC). The unprecedented level of sensitivity ($sim$0.1 mJy beam$^{-1}$) and ang ular resolution ($sim$$0rlap{.}09 approx 35$ AU) of these line observations enable us to search for gas-disk detections towards the known positions of submillimeter-detected dust disks in this region. We detect 23 disks in gas: 17 in CO(3$-$2), 17 in HCO$^+$(4$-$3), and 11 in both lines. Depending on where the sources are located in the ONC, we see the line detections in emission, in absorption against the warm background, or in both emission and absorption. We spectrally resolve the gas with $0.5$ km s$^{-1}$ channels, and find that the kinematics of most sources are consistent with Keplerian rotation. We measure the distribution of gas-disk sizes and find typical radii of $sim$50-200 AU. As such, gas disks in the ONC are compact in comparison with the gas disks seen in low-density star-forming regions. Gas sizes are universally larger than the dust sizes. However, the gas and dust sizes are not strongly correlated. We find a positive correlation between gas size and distance from the massive star $theta^1$ Ori C, indicating that disks in the ONC are influenced by photoionization. Finally, we use the observed kinematics of the detected gas lines to model Keplerian rotation and infer the masses of the central pre-main-sequence stars. Our dynamically-derived stellar masses are not consistent with the spectroscopically-derived masses, and we discuss possible reasons for this discrepancy.
107 - L. Testi , A. Natta , A. Scholz 2016
The study of the properties of disks around young brown dwarfs can provide important clues on the formation of these very low-mass objects and on the possibility of forming planetary systems around them. The presence of warm dusty disks around brown dwarfs is well known, based on near- and mid-infrared studies. High angular resolution observations of the cold outer disk are limited; we used ALMA to attempt a first survey of young brown dwarfs in the $rho$-Oph star-forming region. All 17 young brown dwarfs in our sample were observed at 890 $mu $m in the continuum at $sim0.!^{primeprime}5$ angular resolution. The sensitivity of our observations was chosen to detect $sim0.5$ M$_oplus$ of dust. We detect continuum emission in 11 disks ($sim65$% of the total), and the estimated mass of dust in the detected disks ranges from $sim0.5$ to $sim6$ M$_oplus$. These disk masses imply that planet formation around brown dwarfs may be relatively rare and that the supra-Jupiter mass companions found around some brown dwarfs are probably the result of a binary system formation. We find evidence that the two brightest disks in $rho$-Oph have sharp outer edges at R<~25 AU, in contrast to disks around Taurus brown dwarfs. This difference may suggest that the different environment in $rho$-Oph may lead to significant differences in disk properties. A comparison of the M$_{disk}$/M$_ast$ ratio for brown dwarf and solar-mass systems also shows a possible deficit of mass in brown dwarfs, which could support the evidence for dynamical truncation of disks in the substellar regime. These findings are still tentative and need to be put on firmer grounds by studying the gaseous disks around brown dwarfs and by performing a more systematic and unbiased survey of the disk population around the more massive stars.
The mass of a protoplanetary disk limits the formation and future growth of any planet. Masses of protoplanetary disks are usually calculated from measurements of the dust continuum emission by assuming an interstellar gas-to-dust ratio. To investiga te the utility of CO as an alternate probe of disk mass, we use ALMA to survey $^{13}$CO and C$^{18}$O J = $3-2$ line emission from a sample of 93 protoplanetary disks around stars and brown dwarfs with masses from 0.03 -- 2 M$_{odot}$ in the nearby Chamaeleon I star-forming region. We detect $^{13}$CO emission from 17 sources and C$^{18}$O from only one source. Gas masses for disks are then estimated by comparing the CO line luminosities to results from published disk models that include CO freeze-out and isotope-selective photodissociation. Under the assumption of a typical ISM CO-to-H$_2$ ratios of $10^{-4}$, the resulting gas masses are implausibly low, with an average gas mass of $sim$ 0.05 M$_{Jup}$ as inferred from the average flux of stacked $^{13}$CO lines. The low gas masses and gas-to-dust ratios for Cha I disks are both consistent with similar results from disks in the Lupus star-forming region. The faint CO line emission may instead be explained if disks have much higher gas masses, but freeze-out of CO or complex C-bearing molecules is underestimated in disk models. The conversion of CO flux to CO gas mass also suffers from uncertainties in disk structures, which could affect gas temperatures. CO emission lines will only be a good tracer of the disk mass when models for C and CO depletion are confirmed to be accurate.
The formation of planets occurs within protoplanetary disks surrounding young stars, resulting in perturbation of the gas and dust surface densities. Here, we report the first evidence of spatially resolved gas surface density ($Sigma_{g}$) perturbat ion towards the AS~209 protoplanetary disk from the optically thin C$^{18}$O ($J=2-1$) emission. The observations were carried out at 1.3~mm with ALMA at a spatial resolution of about 0.3$arcsec$ $times$ 0.2$arcsec$ (corresponding to $sim$ 38 $times$ 25 au). The C$^{18}$O emission shows a compact ($le$60~au), centrally peaked emission and an outer ring peaking at 140~au, consistent with that observed in the continuum emission and, its azimuthally averaged radial intensity profile presents a deficit that is spatially coincident with the previously reported dust map. This deficit can only be reproduced with our physico-thermochemical disk model by lowering $Sigma_{gas}$ by nearly an order of magnitude in the dust gaps. Another salient result is that contrary to C$^{18}$O, the DCO$^{+}$ ($J=3-2$) emission peaks between the two dust gaps. We infer that the best scenario to explain our observations (C$^{18}$O deficit and DCO$^{+}$ enhancement) is a gas perturbation due to forming-planet(s), that is commensurate with previous continuum observations of the source along with hydrodynamical simulations. Our findings confirm that the previously observed dust gaps are very likely due to perturbation of the gas surface density that is induced by a planet of at least 0.2~M$rm_{Jupiter}$ in formation. Finally, our observations also show the potential of using CO isotopologues to probe the presence of saturn mass planet(s).
We present ALMA observations of 101 protoplanetary disks within the star-forming region Lynds 1641 in the Orion Molecular Cloud A. Our observations include 1.33 mm continuum emission and spectral windows covering the J=2-1 transition of $^{12}$CO, $^ {13}$CO, and C$^{18}$O. We detect 89 protoplanetary disks in the dust continuum at the 4$sigma$ level ($sim$88% detection rate) and 31 in $^{12}$CO, 13 in $^{13}$CO, and 4 in C$^{18}$O. Our sample contains 23 transitional disks, 20 of which are detected in the continuum. We target infrared-bright Class II objects, which biases our sample towards massive disks. We determine dust masses or upper limits for all sources in our sample and compare our sample to protostars in this region. We find a decrease in dust mass with evolutionary state. We also compare this sample to other regions surveyed in the (sub-)millimeter and find that Lynds 1641 has a relatively massive dust disk population compared to regions of similar and older ages, with a median dust mass of 11.1$^{+32.9}_{-4.6}$ $M_oplus$ and 27% with dust masses equal to or greater than the minimum solar nebula dust mass value of $sim$30 $M_oplus$. We analyze the disk mass-accretion rate relationship in this sample and find that the viscous disk lifetimes are similar to the age of the region, however with a large spread. One object, [MGM2012] 512, shows large-scale ($>$5000 AU) structure in both the dust continuum and the three gas lines. We discuss potential origins for this emission, including an accretion streamer with large dust grains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا