ﻻ يوجد ملخص باللغة العربية
Recently we have witnessed the first multi-messenger detection of colliding neutron stars through Gravitational Waves (GWs) and Electromagnetic (EM) waves (GW170817), thanks to the joint efforts of LIGO/Virgo and Space/Ground-based telescopes. In this paper, we report on the RATIR followup observation strategies and show the results for the trigger G194575. This trigger is not of astrophysical interest; however, is of great interests to the robust design of a followup engine to explore large sky error regions. We discuss the development of an image-subtraction pipeline for the 6-color, optical/NIR imaging camera RATIR. Considering a two band ($i$ and $r$) campaign in the Fall of 2015, we find that the requirement of simultaneous detection in both bands leads to a factor $sim$10 reduction in false alarm rate, which can be further reduced using additional bands. We also show that the performance of our proposed algorithm is robust to fluctuating observing conditions, maintaining a low false alarm rate with a modest decrease in system efficiency that can be overcome utilizing repeat visits. Expanding our pipeline to search for either optical or NIR detections (3 or more bands), considering separately the optical $riZ$ and NIR $YJH$ bands, should result in a false alarm rate $approx 1%$ and an efficiency $approx 90%$. RATIRs simultaneous optical/NIR observations are expected to yield about one candidate transient in the vast 100 $mathrm{deg^2}$ LIGO error region for prioritized followup with larger aperture telescopes.
We investigate the effects of observatory locations on the probability of discovering optical/infrared counterparts of gravitational wave sources. We show that for the LIGO--Virgo network, the odds of discovering optical/infrared (OIR) counterparts s
The Super-Kamiokande detector can be used to search for neutrinos in time coincidence with gravitational waves detected by the LIGO-Virgo Collaboration (LVC). Both low-energy ($7-100$ MeV) and high-energy ($0.1-10^5$ GeV) samples were analyzed in ord
In this work we continue a line of inquiry begun in Kanner et al. which detailed a strategy for utilizing telescopes with narrow fields of view, such as the Swift X-ray Telescope (XRT), to localize gravity wave (GW) triggers from LIGO/Virgo. If one c
The field of gravitational-wave astronomy has been opened up by gravitational-wave observations made with interferometric detectors. This review surveys the current state-of-the-art in gravitational-wave detectors and data analysis methods currently
The detection of the gravitational wave events GW150914, GW151226, LVT 151012 and GW170104 by the Advanced LIGO antennas has opened a new possibility for the study of fundamental physics of gravitational interaction. We suggest a new method for deter