ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Negative Landau damping in bilayer graphene

369   0   0.0 ( 0 )
 نشر من قبل Dmitry Svintsov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In [Phys. Rev. Lett. vol. 119, p. 133901 (2017)] it was argued that two parallel graphene layers in the presence of electron drift support unstable plasmon modes. Here we show that the predicted plasmon instability is an artifact of errors upon evaluation of graphene polarizability in the presence if electron drift. Crucial role of broken Galilean invariance and spatial dispersion of conductivity for suppression of plasmon instabilities is highlighted.



قيم البحث

اقرأ أيضاً

Coulomb drag between parallel quantum wells provides a uniquely sensitive measurement of electron correlations since the drag response depends on interactions only. Recently it has been demonstrated that a new regime of strong interactions can be acc essed for devices consisting of two monlolayer graphene (MLG) crystals, separated by few layer hexagonal boron-nitride. Here we report measurement of Coulomb drag in a double bilayer graphene (BLG) stucture, where the interaction potential is anticipated to be yet further enhanced compared to MLG. At low temperatures and intermediate densities a new drag response with inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double MLG. We demonstrate that by varying the device aspect ratio the negative drag component can be suppressed and a response showing excellent agreement with the density and temperature dependance predicted for momentum drag in double BLG is found. Our results pave the way for pursuit of emergent phases in strongly interacting bilayers, such as the exciton condensate.
168 - Yafis Barlas , R. Cote , K. Nomura 2008
Interaction driven integer quantum Hall effects are anticipated in graphene bilayers because of the near-degeneracy of the eight Landau levels which appear near the neutral system Fermi level. We predict that an intra-Landau-level cyclotron resonance signal will appear at some odd-integer filling factors, accompanied by collective modes which are nearly gapless and have approximate $k^{3/2}$ dispersion. We speculate on the possibility of unususal localization physics associated with these modes.
We experimentally investigate the nonlinear response of a multilayer graphene resonator using a superconducting microwave cavity to detect its motion. The radiation pressure force is used to drive the mechanical resonator in an optomechanically induc ed transparency configuration. By varying the amplitudes of drive and probe tones, the mechanical resonator can be brought into a nonlinear limit. Using the calibration of the optomechanical coupling, we quantify the mechanical Duffing nonlinearity. By increasing the drive force, we observe a decrease in the mechanical dissipation rate at large amplitudes, suggesting a negative nonlinear damping mechanism in the graphene resonator. Increasing the optomechanical backaction, we observe a nonlinear regime not described by a Duffing response that includes new instabilities of the mechanical response.
209 - J. Velasco Jr. , Y. Lee , Z. Zhao 2013
Landau level gaps are important parameters for understanding electronic interactions and symmetry-broken processes in bilayer graphene (BLG). Here we present transport spectroscopy measurements of LL gaps in double-gated suspended BLG with high mobil ities in the quantum Hall regime. By using bias as a spectroscopic tool, we measure the gap {Delta} for the quantum Hall (QH) state at filling factor { u}={pm}4 and -2. The single-particle gap for { u}=4 scales linearly with magnetic field B and is independent of the out-of-plane electric field E. For the symmetry-broken { u}=-2 state, the measured values of gap are 1.1 meV/T and 0.17 meV/T for singly-gated geometry and dual-gated geometry at E=0, respectively. The difference between the two values arises from the E-dependence of the gap, suggesting that the { u}=-2 state is layer polarized. Our studies provide the first measurements of the gaps of the broken symmetry QH states in BLG with well-controlled E, and establish a robust method that can be implemented for studying similar states in other layered materials.
73 - W. Yang , H. Graef , X. Lu 2018
Breakdown of the quantum Hall effect (QHE) is commonly associated with an electric field approaching the inter Landau-level (LL) Zener field, ratio of the Landau gap and cyclotron radius. Eluded in semiconducting heterostructures, in spite of extensi ve investigation, the intrinsic Zener limit is reported here using high-mobility bilayer graphene and high-frequency current noise. We show that collective excitations arising from electron-electron interactions are essential. Beyond a noiseless ballistic QHE regime a large superpoissonian shot noise signals the breakdown via inter-LL scattering. The breakdown is ultimately limited by collective excitations in a regime where phonon and impurity scattering are quenched. The breakdown mechanism can be described by a Landau critical velocity as it bears strong similarities with the roton mechanism of superfluids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا