ﻻ يوجد ملخص باللغة العربية
Interaction driven integer quantum Hall effects are anticipated in graphene bilayers because of the near-degeneracy of the eight Landau levels which appear near the neutral system Fermi level. We predict that an intra-Landau-level cyclotron resonance signal will appear at some odd-integer filling factors, accompanied by collective modes which are nearly gapless and have approximate $k^{3/2}$ dispersion. We speculate on the possibility of unususal localization physics associated with these modes.
We present the first measurements of cyclotron resonance of electrons and holes in bilayer graphene. In magnetic fields up to B = 18 T we observe four distinct intraband transitions in both the conduction and valence bands. The transition energies ar
Landau level gaps are important parameters for understanding electronic interactions and symmetry-broken processes in bilayer graphene (BLG). Here we present transport spectroscopy measurements of LL gaps in double-gated suspended BLG with high mobil
The quantum Hall effect near the charge neutrality point in bilayer graphene is investigated in high magnetic fields of up to 35 T using electronic transport measurements. In the high field regime, the eight-fold degeneracy in the zero energy Landau
We report the observation of the resonant excitation of edge photocurrents in bilayer graphene subjected to terahertz radiation and a magnetic field. The resonantly excited edge photocurrent is observed for both inter-band (at low carrier densities)
Inter-Landau-level transitions in the bilayer graphene at high perpendicular magnetic field at the filling-factor v<<1 have been studied. The next-nearest-neighbor transitions, energy difference between dimer and non-dimer sites and layer asymmetry a