ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-Domain 3D Equivariant Image Embeddings

63   0   0.0 ( 0 )
 نشر من قبل Carlos Esteves
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Spherical convolutional networks have been introduced recently as tools to learn powerful feature representations of 3D shapes. Spherical CNNs are equivariant to 3D rotations making them ideally suited to applications where 3D data may be observed in arbitrary orientations. In this paper we learn 2D image embeddings with a similar equivariant structure: embedding the image of a 3D object should commute with rotations of the object. We introduce a cross-domain embedding from 2D images into a spherical CNN latent space. This embedding encodes images with 3D shape properties and is equivariant to 3D rotations of the observed object. The model is supervised only by target embeddings obtained from a spherical CNN pretrained for 3D shape classification. We show that learning a rich embedding for images with appropriate geometric structure is sufficient for tackling varied applications, such as relative pose estimation and novel view synthesis, without requiring additional task-specific supervision.



قيم البحث

اقرأ أيضاً

Training generative models, such as GANs, on a target domain containing limited examples (e.g., 10) can easily result in overfitting. In this work, we seek to utilize a large source domain for pretraining and transfer the diversity information from s ource to target. We propose to preserve the relative similarities and differences between instances in the source via a novel cross-domain distance consistency loss. To further reduce overfitting, we present an anchor-based strategy to encourage different levels of realism over different regions in the latent space. With extensive results in both photorealistic and non-photorealistic domains, we demonstrate qualitatively and quantitatively that our few-shot model automatically discovers correspondences between source and target domains and generates more diverse and realistic images than previous methods.
102 - Zhongwei Xie , Lin Li , Xian Zhong 2018
Image-to-video person re-identification identifies a target person by a probe image from quantities of pedestrian videos captured by non-overlapping cameras. Despite the great progress achieved,its still challenging to match in the multimodal scenari o,i.e. between image and video. Currently,state-of-the-art approaches mainly focus on the task-specific data,neglecting the extra information on the different but related tasks. In this paper,we propose an end-to-end neural network framework for image-to-video person reidentification by leveraging cross-modal embeddings learned from extra information.Concretely speaking,cross-modal embeddings from image captioning and video captioning models are reused to help learned features be projected into a coordinated space,where similarity can be directly computed. Besides,training steps from fixed model reuse approach are integrated into our framework,which can incorporate beneficial information and eventually make the target networks independent of existing models. Apart from that,our proposed framework resorts to CNNs and LSTMs for extracting visual and spatiotemporal features,and combines the strengths of identification and verification model to improve the discriminative ability of the learned feature. The experimental results demonstrate the effectiveness of our framework on narrowing down the gap between heterogeneous data and obtaining observable improvement in image-to-video person re-identification.
In this work, we present a novel method to learn a local cross-domain descriptor for 2D image and 3D point cloud matching. Our proposed method is a dual auto-encoder neural network that maps 2D and 3D input into a shared latent space representation. We show that such local cross-domain descriptors in the shared embedding are more discriminative than those obtained from individual training in 2D and 3D domains. To facilitate the training process, we built a new dataset by collecting $approx 1.4$ millions of 2D-3D correspondences with various lighting conditions and settings from publicly available RGB-D scenes. Our descriptor is evaluated in three main experiments: 2D-3D matching, cross-domain retrieval, and sparse-to-dense depth estimation. Experimental results confirm the robustness of our approach as well as its competitive performance not only in solving cross-domain tasks but also in being able to generalize to solve sole 2D and 3D tasks. Our dataset and code are released publicly at url{https://hkust-vgd.github.io/lcd}.
Face image manipulation via three-dimensional guidance has been widely applied in various interactive scenarios due to its semantically-meaningful understanding and user-friendly controllability. However, existing 3D-morphable-model-based manipulatio n methods are not directly applicable to out-of-domain faces, such as non-photorealistic paintings, cartoon portraits, or even animals, mainly due to the formidable difficulties in building the model for each specific face domain. To overcome this challenge, we propose, as far as we know, the first method to manipulate faces in arbitrary domains using human 3DMM. This is achieved through two major steps: 1) disentangled mapping from 3DMM parameters to the latent space embedding of a pre-trained StyleGAN2 that guarantees disentangled and precise controls for each semantic attribute; and 2) cross-domain adaptation that bridges domain discrepancies and makes human 3DMM applicable to out-of-domain faces by enforcing a consistent latent space embedding. Experiments and comparisons demonstrate the superiority of our high-quality semantic manipulation method on a variety of face domains with all major 3D facial attributes controllable: pose, expression, shape, albedo, and illumination. Moreover, we develop an intuitive editing interface to support user-friendly control and instant feedback. Our project page is https://cassiepython.github.io/sigasia/cddfm3d.html.
Unsupervised Domain Adaptation (UDA) is crucial to tackle the lack of annotations in a new domain. There are many multi-modal datasets, but most UDA approaches are uni-modal. In this work, we explore how to learn from multi-modality and propose cross -modal UDA (xMUDA) where we assume the presence of 2D images and 3D point clouds for 3D semantic segmentation. This is challenging as the two input spaces are heterogeneous and can be impacted differently by domain shift. In xMUDA, modalities learn from each other through mutual mimicking, disentangled from the segmentation objective, to prevent the stronger modality from adopting false predictions from the weaker one. We evaluate on new UDA scenarios including day-to-night, country-to-country and dataset-to-dataset, leveraging recent autonomous driving datasets. xMUDA brings large improvements over uni-modal UDA on all tested scenarios, and is complementary to state-of-the-art UDA techniques. Code is available at https://github.com/valeoai/xmuda.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا