ﻻ يوجد ملخص باللغة العربية
We study the quantum sine-Gordon model within a nonperturbative functional renormalization-group approach (FRG). This approach is benchmarked by comparing our findings for the soliton and lightest breather (soliton-antisoliton bound state) masses to exact results. We then examine the validity of the Lukyanov-Zamolodchikov conjecture for the expectation value $langle e^{frac{i}{2}nbetavarphi}rangle$ of the exponential fields in the massive phase ($n$ is integer and $2pi/beta$ denotes the periodicity of the potential in the sine-Gordon model). We find that the minimum of the relative and absolute disagreements between the FRG results and the conjecture is smaller than 0.01.
In this paper we study the $c$-function of the sine-Gordon model taking explicitly into account the periodicity of the interaction potential. The integration of the $c$-function along trajectories of the non-perturbative renormalization group flow gi
We reexamine the two-dimensional linear O(2) model ($varphi^4$ theory) in the framework of the nonperturbative renormalization-group. From the flow equations obtained in the derivative expansion to second order and with optimization of the infrared r
The renormalization group plays an essential role in many areas of physics, both conceptually and as a practical tool to determine the long-distance low-energy properties of many systems on the one hand and on the other hand search for viable ultravi
Using the nonperturbative renormalization group, we study the existence of bound states in the symmetry-broken phase of the scalar $phi^4$ theory in all dimensions between two and four and as a function of the temperature. The accurate description of
We present a numerical computation of overlaps in mass quenches in sine-Gordon quantum field theory using truncated conformal space approach (TCSA). To improve the cut-off dependence of the method, we use a novel running coupling definition which has