ترغب بنشر مسار تعليمي؟ اضغط هنا

Reexamination of the nonperturbative renormalization-group approach to the Kosterlitz-Thouless transition

358   0   0.0 ( 0 )
 نشر من قبل Nicolas Dupuis
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reexamine the two-dimensional linear O(2) model ($varphi^4$ theory) in the framework of the nonperturbative renormalization-group. From the flow equations obtained in the derivative expansion to second order and with optimization of the infrared regulator, we find a transition between a high-temperature (disordered) phase and a low-temperature phase displaying a line of fixed points and algebraic order. We obtain a picture in agreement with the standard theory of the Kosterlitz-Thouless (KT) transition and reproduce the universal features of the transition. In particular, we find the anomalous dimension $eta(Tkt)simeq 0.24$ and the stiffness jump $rho_s(Tkt^-)simeq 0.64$ at the transition temperature $Tkt$, in very good agreement with the exact results $eta(Tkt)=1/4$ and $rho_s(Tkt^-)=2/pi$, as well as an essential singularity of the correlation length in the high-temperature phase as $Tto Tkt$.

قيم البحث

اقرأ أيضاً

80 - R. Daviet , N. Dupuis 2018
We study the quantum sine-Gordon model within a nonperturbative functional renormalization-group approach (FRG). This approach is benchmarked by comparing our findings for the soliton and lightest breather (soliton-antisoliton bound state) masses to exact results. We then examine the validity of the Lukyanov-Zamolodchikov conjecture for the expectation value $langle e^{frac{i}{2}nbetavarphi}rangle$ of the exponential fields in the massive phase ($n$ is integer and $2pi/beta$ denotes the periodicity of the potential in the sine-Gordon model). We find that the minimum of the relative and absolute disagreements between the FRG results and the conjecture is smaller than 0.01.
138 - F. Rose , F. Benitez , F. Leonard 2016
Using the nonperturbative renormalization group, we study the existence of bound states in the symmetry-broken phase of the scalar $phi^4$ theory in all dimensions between two and four and as a function of the temperature. The accurate description of the momentum dependence of the two-point function, required to get the spectrum of the theory, is provided by means of the Blaizot--Mendez-Galain--Wschebor approximation scheme. We confirm the existence of a bound state in dimension three, with a mass within 1% of previous Monte-Carlo and numerical diagonalization values.
217 - N. Dupuis , K. Sengupta 2008
The non-perturbative renormalization-group approach is extended to lattice models, considering as an example a $phi^4$ theory defined on a $d$-dimensional hypercubic lattice. Within a simple approximation for the effective action, we solve the flow e quations and obtain the renormalized dispersion $eps(q)$ over the whole Brillouin zone of the reciprocal lattice. In the long-distance limit, where the lattice does not matter any more, we reproduce the usual flow equations of the continuum model. We show how the numerical solution of the flow equations can be simplified by expanding the dispersion in a finite number of circular harmonics.
We test an improved finite-size scaling method for reliably extracting the critical temperature $T_{rm BKT}$ of a Berezinskii-Kosterlitz-Thouless (BKT) transition. Using known single-parameter logarithmic corrections to the spin stiffness $rho_s$ at $T_{rm BKT}$ in combination with the Kosterlitz-Nelson relation between the transition temperature and the stiffness, $rho_s(T_{rm BKT})=2T_{rm BKT}/pi$, we define a size dependent transition temperature $T_{rm BKT}(L_1,L_2)$ based on a pair of system sizes $L_1,L_2$, e.g., $L_2=2L_1$. We use Monte Carlo data for the standard two-dimensional classical XY model to demonstrate that this quantity is well behaved and can be reliably extrapolated to the thermodynamic limit using the next expected logarithmic correction beyond the ones included in defining $T_{rm BKT}(L_1,L_2)$. For the Monte Carlo calculations we use GPU (graphical processing unit) computing to obtain high-precision data for $L$ up to 512. We find that the sub-leading logarithmic corrections have significant effects on the extrapolation. Our result $T_{rm BKT}=0.8935(1)$ is several error bars above the previously best estimates of the transition temperature; $T_{rm BKT} approx 0.8929$. If only the leading log-correction is used, the result is, however, consistent with the lower value, suggesting that previous works have underestimated $T_{rm BKT}$ because of neglect of sub-leading logarithms. Our method is easy to implement in practice and should be applicable to generic BKT transitions.
The renormalization group plays an essential role in many areas of physics, both conceptually and as a practical tool to determine the long-distance low-energy properties of many systems on the one hand and on the other hand search for viable ultravi olet completions in fundamental physics. It provides us with a natural framework to study theoretical models where degrees of freedom are correlated over long distances and that may exhibit very distinct behavior on different energy scales. The nonperturbative functional renormalization-group (FRG) approach is a modern implementation of Wilsons RG, which allows one to set up nonperturbative approximation schemes that go beyond the standard perturbative RG approaches. The FRG is based on an exact functional flow equation of a coarse-grained effective action (or Gibbs free energy in the language of statistical mechanics). We review the main approximation schemes that are commonly used to solve this flow equation and discuss applications in equilibrium and out-of-equilibrium statistical physics, quantum many-particle systems, high-energy physics and quantum gravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا