ترغب بنشر مسار تعليمي؟ اضغط هنا

Bound states of the $phi^4$ model via the nonperturbative renormalization group

139   0   0.0 ( 0 )
 نشر من قبل Federico Benitez
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the nonperturbative renormalization group, we study the existence of bound states in the symmetry-broken phase of the scalar $phi^4$ theory in all dimensions between two and four and as a function of the temperature. The accurate description of the momentum dependence of the two-point function, required to get the spectrum of the theory, is provided by means of the Blaizot--Mendez-Galain--Wschebor approximation scheme. We confirm the existence of a bound state in dimension three, with a mass within 1% of previous Monte-Carlo and numerical diagonalization values.



قيم البحث

اقرأ أيضاً

158 - J. Kaupuzs 2010
A nonperturbative renormalization of the phi^4 model is considered. First we integrate out only a single pair of conjugated modes with wave vectors +/- q. Then we are looking for the RG equation which would describe the transformation of the Hamilton ian under the integration over a shell Lambda - d Lambda < k < Lambda, where d Lambda -> 0. We show that the known Wegner--Houghton equation is consistent with the assumption of a simple superposition of the integration results for +/- q. The renormalized action can be expanded in powers of the phi^4 coupling constant u in the high temperature phase at u -> 0. We compare the expansion coefficients with those exactly calculated by the diagrammatic perturbative method, and find some inconsistency. It causes a question in which sense the Wegner-Houghton equation is really exact.
80 - R. Daviet , N. Dupuis 2018
We study the quantum sine-Gordon model within a nonperturbative functional renormalization-group approach (FRG). This approach is benchmarked by comparing our findings for the soliton and lightest breather (soliton-antisoliton bound state) masses to exact results. We then examine the validity of the Lukyanov-Zamolodchikov conjecture for the expectation value $langle e^{frac{i}{2}nbetavarphi}rangle$ of the exponential fields in the massive phase ($n$ is integer and $2pi/beta$ denotes the periodicity of the potential in the sine-Gordon model). We find that the minimum of the relative and absolute disagreements between the FRG results and the conjecture is smaller than 0.01.
We reexamine the two-dimensional linear O(2) model ($varphi^4$ theory) in the framework of the nonperturbative renormalization-group. From the flow equations obtained in the derivative expansion to second order and with optimization of the infrared r egulator, we find a transition between a high-temperature (disordered) phase and a low-temperature phase displaying a line of fixed points and algebraic order. We obtain a picture in agreement with the standard theory of the Kosterlitz-Thouless (KT) transition and reproduce the universal features of the transition. In particular, we find the anomalous dimension $eta(Tkt)simeq 0.24$ and the stiffness jump $rho_s(Tkt^-)simeq 0.64$ at the transition temperature $Tkt$, in very good agreement with the exact results $eta(Tkt)=1/4$ and $rho_s(Tkt^-)=2/pi$, as well as an essential singularity of the correlation length in the high-temperature phase as $Tto Tkt$.
The renormalization group plays an essential role in many areas of physics, both conceptually and as a practical tool to determine the long-distance low-energy properties of many systems on the one hand and on the other hand search for viable ultravi olet completions in fundamental physics. It provides us with a natural framework to study theoretical models where degrees of freedom are correlated over long distances and that may exhibit very distinct behavior on different energy scales. The nonperturbative functional renormalization-group (FRG) approach is a modern implementation of Wilsons RG, which allows one to set up nonperturbative approximation schemes that go beyond the standard perturbative RG approaches. The FRG is based on an exact functional flow equation of a coarse-grained effective action (or Gibbs free energy in the language of statistical mechanics). We review the main approximation schemes that are commonly used to solve this flow equation and discuss applications in equilibrium and out-of-equilibrium statistical physics, quantum many-particle systems, high-energy physics and quantum gravity.
In this paper we study the $c$-function of the sine-Gordon model taking explicitly into account the periodicity of the interaction potential. The integration of the $c$-function along trajectories of the non-perturbative renormalization group flow gi ves access to the central charges of the model in the fixed points. The results at vanishing frequency $beta^2$, where the periodicity does not play a role, are retrieved and the independence on the cutoff regulator for small frequencies is discussed. Our findings show that the central charge obtained integrating the trajectories starting from the repulsive low-frequencies fixed points ($beta^2 <8pi$) to the infrared limit is in good quantitative agreement with the expected $Delta c=1$ result. The behavior of the $c$-function in the other parts of the flow diagram is also discussed. Finally, we point out that also including higher harmonics in the renormalization group treatment at the level of local potential approximation is not sufficient to give reasonable results, even if the periodicity is taken into account. Rather, incorporating the wave-function renormalization (i. e. going beyond local potential approximation) is crucial to get sensible results even when a single frequency is used.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا