ترغب بنشر مسار تعليمي؟ اضغط هنا

What is the No-Boundary Wave Function of the Universe?

146   0   0.0 ( 0 )
 نشر من قبل Thomas Hertog
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We specify the semiclassical no-boundary wave function of the universe without relying on a functional integral of any kind. The wave function is given as a sum of specific saddle points of the dynamical theory that satisfy conditions of regularity on geometry and field and which together yield a time neutral state that is normalizable in an appropriate inner product. This specifies a predictive framework of semiclassical quantum cosmology that is adequate to make probabilistic predictions, which are in agreement with observations in simple models. The use of holography to go beyond the semiclassical approximation is briefly discussed.

قيم البحث

اقرأ أيضاً

A recent article by Mathur attempts a precise formulation for the paradox of black hole information loss [S. D. Mathur, arXiv:1108.0302v2 (hep-th)]. We point out that a key component of the above work, which refers to entangled pairs inside and outsi de of the horizon and their associated entropy gain or information loss during black hole evaporation, is a presumptuous false outcome not backed by the very foundation of physics. The very foundation of Mathurs above work is thus incorrect. We further show that within the framework of Hawking radiation as tunneling the so-called small corrections are sufficient to resolve the information loss problem.
In recent work, we introduced Picard-Lefschetz theory as a tool for defining the Lorentzian path integral for quantum gravity in a systematic semiclassical expansion. This formulation avoids several pitfalls occurring in the Euclidean approach. Our m ethod provides, in particular, a more precise formulation of the Hartle-Hawking no boundary proposal, as a sum over real Lorentzian four-geometries interpolating between an initial three-geometry of zero size, {it i.e}, a point, and a final three-geometry. With this definition, we calculated the no boundary amplitude for a closed universe with a cosmological constant, assuming cosmological symmetry for the background and including linear perturbations. We found the opposite semiclassical exponent to that obtained by Hartle and Hawking for the creation of a de Sitter spacetime from nothing. Furthermore, we found the linearized perturbations to be governed by an {it inverse} Gaussian distribution, meaning they are unsuppressed and out of control. Recently, Diaz Dorronsoro {it et al.} followed our methods but attempted to rescue the no boundary proposal by integrating the lapse over a different, intrinsically complex contour. Here, we show that, in addition to the desired Hartle-Hawking saddle point contribution, their contour yields extra, non-perturbative corrections which again render the perturbations unsuppressed. We prove there is {it no} choice of complex contour for the lapse which avoids this problem. We extend our discussion to include backreaction in the leading semiclassical approximation, fully nonlinearly for the lowest tensor harmonic and to second order for all higher modes. Implications for quantum de Sitter spacetime and for cosmic inflation are briefly discussed.
In previous works, we have demonstrated that the path integral for {it real, Lorentzian} four-geometries in Einstein gravity yields sensible results in well-understood physical situations, but leads to uncontrolled fluctuations when the no boundary c ondition proposed by Hartle and Hawking is imposed. In order to circumvent our result, new definitions for the gravitational path integral have been sought, involving specific choices for a class of {it complex} four-geometries to be included. In their latest proposal, Diaz Dorronsoro {it et al.}~cite{DiazDorronsoro:2018wro} advocate integrating the lapse over a complex circular contour enclosing the origin. In this note we show that, like their earlier proposal, this leads to mathematical and physical inconsistencies and thus cannot be regarded as a basis for quantum cosmology. We also comment on Vilenkin and Yamadas recent modification of the tunneling proposal, made in order to avoid the same problems. We show that it leads to the breakdown of perturbation theory in a strong coupling regime.
We show using the entropy function formalism developed by Sen cite{Sen:2005wa} that the boundary term which arises from the Einstein-Hilbert action is sufficient to yield the Bekenstein-Hawking entropy of a static extremal black hole which is asympto tically flat. However, for asymptotically $AdS$ black holes, the bulk term also plays an important role due to the presence of the cosmological constant. Further, we show that for extremal rotating black holes, both the boundary and the bulk terms contribute non-vanishing pieces to the entropy.
The influence of a spherical boundary on the vacuum fluctuations of a massive scalar field is investigated in background of $(D+1)$-dimensional Milne universe, assuming that the field obeys Robin boundary condition on the sphere. The normalized mode functions are derived for the regions inside and outside the sphere and different vacuum states are discussed. For the conformal vacuum, the Hadamard function is decomposed into boundary-free and sphere-induced contributions and an integral representation is obtained for the latter in both the interior and exterior regions. As important local characteristics of the vacuum state the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor are investigated. It is shown that the vacuum energy-momentum tensor has an off-diagonal component that corresponds to the energy flux along the radial direction. Depending on the coefficient in Robin boundary condition the sphere-induced contribution to the vacuum energy and the energy flux can be either positive or negative. At late stages of the expansion and for a massive field the decay of the sphere-induced VEVs, as functions of time, is damping oscillatory. The geometry under consideration is conformally related to that for a static spacetime with negative constant curvature space and the sphere-induced contributions in the corresponding VEVs are compared.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا