ﻻ يوجد ملخص باللغة العربية
A recent article by Mathur attempts a precise formulation for the paradox of black hole information loss [S. D. Mathur, arXiv:1108.0302v2 (hep-th)]. We point out that a key component of the above work, which refers to entangled pairs inside and outside of the horizon and their associated entropy gain or information loss during black hole evaporation, is a presumptuous false outcome not backed by the very foundation of physics. The very foundation of Mathurs above work is thus incorrect. We further show that within the framework of Hawking radiation as tunneling the so-called small corrections are sufficient to resolve the information loss problem.
We specify the semiclassical no-boundary wave function of the universe without relying on a functional integral of any kind. The wave function is given as a sum of specific saddle points of the dynamical theory that satisfy conditions of regularity o
In quantum information theory, Fisher Information is a natural metric on the space of perturbations to a density matrix, defined by calculating the relative entropy with the unperturbed state at quadratic order in perturbations. In gravitational phys
The information loss paradox is usually stated as an incompatibility between general relativity and quantum mechanics. However, the assumptions leading to the problem are often overlooked and, in fact, a careful inspection of the main hypothesises su
It is known that time-dependent perturbations can enhance superconductivity and increase the critical temperature. If this phenomenon happens to high-T_c superconductors, one could obtain room-temperature superconductors, but this is still an open is
This paper answers Bells question: What does quantum information refer to? It is about quantum properties represented by subspaces of the quantum Hilbert space, or their projectors, to which standard (Kolmogorov) probabilities can be assigned by usin